[1] SHI P,LIN J. Simple BERT models for relation extraction and semantic role labeling[EB/OL].[2019-06-10]. https://arxiv.org/pdf/1904.05255v1.pdf. [2] DEVLIN J,CHANG M,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics,2019:4171-4186. [3] CUI Y,CHE W,LIU T,et al. Pre-training with whole word masking for Chinese BERT[EB/OL].[2019-10-29]. https://arxiv.org/pdf/1906.08101.pdf. [4] AONE C, HALVERSON L, HAMPTON T, et al. SRA:description of the IE2 system used for MUC-7[EB/OL].[1998-04-29]. https://www.aclweb.org/anthology/M98-1012.pdf. [5] ZHOU G,SU J,ZHANG J,et al. Exploring various knowledge in relation extraction[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2005:427-434. [6] 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818.(E H H,ZHANG W J, XIAO S Q,et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software,2019,30(6):1793-1818.) [7] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA:Association for Computational Linguistics,2012:1201-1211. [8] HASHIMOTO K, MIWA M, TSURUOKA Y, et al. Simple customization of recursive neural networks for semantic relation classification[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2013:1372-1376. [9] BAHDANAU D,CHO K,BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2019-05-19]. https://arxiv.org/pdf/1409.0473v1.pdf. [10] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2014:2335-2344. [11] SAHU S,ANAND A,ORUGANTY K,et al. Relation extraction from clinical texts using domain invariant convolutional neural network[C]//Proceedings of the 15th Workshop on Biomedical Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2016:206-215. [12] CHIKKA V R, KARLAPALEM K. A hybrid deep learning approach for medical relation extraction[EB/OL].[2018-01-26]. https://arxiv.org/pdf/1806.11189.pdf. [13] NGUYEN D Q,VERSPOOR K. Convolutional neural networks for chemical-disease relation extraction are improved with characterbased word embeddings[C]//Proceedings of the 17th Workshop on Biomedical Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2018:129-136. [14] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5998-6008. [15] LI W,GAO S,ZHOU H,et al. The automatic text classification method based on BERT and feature union[C]//Proceedings of the IEEE 25th International Conference on Parallel and Distributed Systems. Piscataway:IEEE,2019:774-777. [16] ZHANG W,JIANG S,ZHAO S,et al. A BERT-BiLSTM-CRF model for Chinese electronic medical records named entity recognition[C]//Proceedings of the 12th International Conference on Intelligent Computation Technology and Automation. Piscataway:IEEE,2019:166-169. [17] 蔡国永, 林强, 任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报(工学版),2020, 50(1):1-7,20. (CAI G Y,LIN Q,REN K Q. Cross-domain text sentiment classification based on domain-adversarial network and BERT[J]. Journal of Shandong University(Engineering Science),2020,50(1):1-7,20.) [18] 杨锦锋, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报,2014,40(8):1537-1562. (YANG J F,YU Q B,GUAN Y,et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J]. Acta Automatica Sinica,2014,40(8):1537-1562.) [19] DUAN D H,HUANG M X,MU Y Z. Research for building high performance communication service based on Netty protocol in smart health[C]//ICSPS 2017:Proceedings of the 9th International Conference on Signal Processing Systems. New York:ACM,2017:18-21. [20] 李纲, 潘荣清, 毛进, 等. 整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别[J]. 现代情报,2020,40(4):3-12,58. (LI G,PAN R Q,MAO J,et al. Entity recognition of Chinese electronic medical records based on BiLSTM-CRF network and dictionary resources[J]. Journal of Modern Information,2020,40(4):3-12,58.) [21] WU Y,SCHUSTER M,CHEN Z,et al. Google's neural machine translation system:bridging the gap between human and machine translation[EB/OL].[2019-10-08]. https://arxiv.org/pdf/1609.08144.pdf. [22] CHE W,LI Z,LIU T. LTP:a Chinese language technology platform[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Demonstrations. Stroudsburg, PA:Association for Computational Linguistics,2010:13-16. [23] ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:207-212. |