[1] ROSENBERGER C,CHEHDI K. Unsupervised clustering method with optimal estimation of the number of clusters:application to image segmentation[C]//Proceedings of the 15th International Conference on Pattern Recognition. Piscataway:IEEE, 2000:656-659. [2] 李晓光, 邵超. 基于网格数据中心的密度峰值聚类算法[J]. 计算机科学,2019,46(S1):457-460,487.(LI X G,SHAO C. Density peak clustering algorithm based on grid data center[J]. Computer Science,2019,46(S1):457-460,487.) [3] 周世波, 徐维祥. 密度峰值快速搜索与聚类算法及其在船舶位置数据分析中的应用[J]. 仪器仪表学报,2018,39(7):152-163.(ZHOU S B,XU W X. Clustering by fast search and find of density peaks and its application in ship location data analysis[J]. Chinese Journal of Scientific Instrument,2018,39(7):152-163.) [4] QI J, YU Y, WANG L, et al. An effective and efficient hierarchical K-means clustering algorithm[J]. International Journal of Distributed Sensor Networks,2017,13(8):1-17. [5] MA L,FAN S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests[J]. BMC Bioinformatics,2017,18:No. 169. [6] XU X,DING S,SHI Z. An improved density peaks clustering algorithm with fast finding cluster centers[J]. Knowledge-Based Systems,2018,158:65-74. [7] DENG C,SONG J,SUN R,et al. GRIDEN:an effective gridbased and density-based spatial clustering algorithm to support parallel computing[J]. Pattern Recognition Letters,2018,109:81-88. [8] 朱杰, 陈黎飞. 核密度估计的聚类算法[J]. 模式识别与人工智能,2017,30(5):439-447. (ZHU J,CHEN L F. Clustering algorithm with kernel density estimation[J]. Pattern Recognition and Artificial Intelligence,2017,30(5):439-447.) [9] MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA:University of California Press,1967:281-297. [10] ESTER M,KRIEGE H P,SANDER J,et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto,CA:AAAI Press,1996:226-231. [11] ANKERST M,BREUNIG M M,KRIEGE H P,et al. OPTICS:ordering points to identify the clustering structure[C]//Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. New York:ACM,1999:49-60. [12] FREY B J,DUECK D. Clustering by passing messages between data points[J]. Science,2007,315(5814):972-976. [13] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [14] CHEN Z, QI Z, MENG F, et al. Image segmentation via improving clustering algorithms with density and distance[J]. Procedia Computer Science,2015,55:1015-1022. [15] CHEN Y,LAI D H,QI H,et al. A new method to estimate ages of facial image for large database[J]. Multimedia Tools and Applications,2016,75(5):2877-2895. [16] 黄岚, 李玉, 王贵参, 等. 基于点距离和密度峰值聚类的社区发现方法[J]. 吉林大学学报(工学版),2016,46(6):2042-2051. (HUANG L,LI Y,WANG G S,et al. Community detection method based on vertex distance and clustering of density peaks[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(6):2042-2051.) [17] 杜航原, 裴希亚, 王文剑. 面向属性网络的重叠社区发现算法[J]. 计算机应用,2019,39(11):3151-3157.(DU H Y,PEI X Y,WANG W J. Overlapping community detection algorithm for attributed networks[J]. Journal of Computer Applications,2019, 39(11):3151-3157.) [18] DU M,DING S,XU X,et al. Density peaks clustering using geodesic distances[J]. International Journal of Machine Learning and Cybernetics,2017,9(8):1335-1349. [19] MEHMOOD R,ZHANG G,BIE R,et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing,2016,208:210-217. [20] 吴斌, 卢红丽, 江惠君. 自适应密度峰值聚类算法[J]. 计算机应用,2020,40(6):1654-1661.(WU B,LU H L,JIANG H J. Adaptive density peaks clustering algorithm[J]. Journal of Computer Applications,2020,40(6):1654-1661.) [21] 马春来, 单洪, 马涛. 一种基于簇中心点自动选择策略的密度峰值聚类算法[J]. 计算机科学,2016,43(7):255-258,280. (MA C L,SHAN H,MA T. Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016, 43(7):255-258,280.) [22] 丁志成, 葛洪伟, 周竞. 基于KL散度的密度峰值聚类算法[J]. 重庆邮电大学学报(自然科学版),2019,31(3):367-374. (DING Z C,GE H W,ZHOU J. Density peaks clustering based on Kullback Leibler divergence[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2019,31(3):367-374.) [23] LI Z,TANG Y. Comparative density peaks clustering[J]. Expert Systems with Application,2018,95:236-247. [24] 晏焕钱. 基于密度峰值聚类的两种改进算法的研究[D]. 兰州:兰州大学,2018:26-28. (YAN H Q. Research on two improved density peaks clustering algorithms[D]. Lanzhou:Lanzhou University, 2018:26-28.) [25] 刘奕志, 程汝峰, 梁永全. 一种基于共享近邻的密度峰值聚类算法[J]. 计算机科学,2018,45(2):125-129,146.(LIU Y Z, CHENG R F,LIANG Y Q. Clustering algorithm based on shared nearest neighbors and density peaks[J]. Computer Science, 2018,45(2):125-129,146.) [26] DUA D,GRAFF C. UCI machine learning repository[EB/OL].[2019-11-05]. http://archive.ics.uci.edu/ml. [27] 王万良, 吴菲, 吕闯. 自动确定聚类中心的快速搜索和发现密度峰值的聚类算法[J]. 模式识别与人工智能,2019,32(11):1032-1041. (WANG W L, WU F, LYU C. Automatic determination of clustering center for clustering by fast search and find of density peaks[J]. Pattern Recognition and Artificial Intelligence,2019,32(11):1032-1041.) [28] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics,2008,78(4 Pt 2):No. 046110. |