[1] BOTHOREL C,CRUZ J D,MAGNANI M,et al. Clustering attributed graphs:models,measures and methods[J]. Network Science,2015,3(3):408-444. [2] 齐金山, 梁循, 李志宇, 等. 大规模复杂信息网络表示学习:概念、方法与挑战[J]. 计算机学报,2018,41(10):2394-2420. (QI J S,LIANG X,LI Z Y,et al. Representation learning of largescale complex information network:concepts, methods and challenges[J]. Chinese Journal of Computers,2018,41(10):2394-2420.) [3] CUI P,WANG X,PEI J,et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(5):833-852. [4] 尹赢, 吉立新, 黄瑞阳, 等. 网络表示学习的研究与发展[J]. 网络与信息安全学报,2019,5(2):77-87.(YIN Y,JI L X, HUANG R Y, et al. Research and development of network representation learning[J]. Chinese Journal of Network and Information Security,2019,5(2):77-87.) [5] ROWEIS S T,SUAL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500):2323-2326. [6] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge:MIT Press,2001:585-591 [7] SHAW B, JEBARA T, Structure preserving embedding[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM,2009:937-944. [8] AHMED A,SHERVASHIDZE N,NARAYANAMURTHY S,et al. Distributed large-scale natural graph factorization[C]//Proceedings of the 22nd International Conference on World Wide Web. New York:ACM,2013:37-48. [9] CAO S,LU W,XU Q. GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM,2015:891-900. [10] OU M,CUI P,PEI J,et al. Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:1105-1114. [11] WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:203-209. [12] LI Y,WANG Y,ZHANG T,et al. Learning network embedding with community structural information[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:2937-2943. [13] YANG C, SUN M, LIU Z, et al. Fast network embedding enhancement via high order proximity approximation[C]//Proceedings of 26th International Joint Conference on Artificial Intelligence. San Mateo,CA:IJCAI,2017:3894-3900. [14] PEROZZI B, Al-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:701-710. [15] GROVER A,LESKOVEC J. node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:855-864. [16] CHEN H, PEROZZI B, HU Y, et al. HARP:hierarchical representation learning for networks[C]//Proceedings of 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2127-2134. [17] LI J,ZHU J,ZHANG B. Discriminative deep random walk for network classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguist. Stroudsburg, PA:Association for Computational Linguistics, 2016:1004-1013. [18] 陈丽, 朱裴松, 钱铁云, 等. 基于边采样的网络表示学习模型[J]. 软件学报,2018,29(3):756-771.(CHEN L,ZHU P S, QIAN T Y,et al. Edge sampling based network embedding model[J]. Journal of Software,2018,29(3):756-771.) [19] WANG D,CUI P,ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:1225-1234. [20] CAO S,LU W,XU Q. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1145-1152.) [21] XIE J,GIRSHICK R,FARHADI A,et al. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:478-487. [22] STREHL A,GHOSH J,Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research,2002,3:583-617. |