Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 9-15.DOI: 10.11772/j.issn.1001-9081.2021071289
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Jijie ZHANG1, Yan YANG1,2(), Yong LIU1,2
Received:
2021-07-19
Revised:
2021-08-13
Accepted:
2021-08-19
Online:
2021-08-13
Published:
2022-01-10
Contact:
Yan YANG
About author:
ZHANG Jijie, born in 1998, M. S. candidate. His research interests include graph representation learning, recommendation system.Supported by:
通讯作者:
杨艳
作者简介:
张继杰(1998—),男,山东青岛人,硕士研究生,CCF会员,主要研究方向:图表示学习、推荐系统CLC Number:
Jijie ZHANG, Yan YANG, Yong LIU. Adaptive deep graph convolution using initial residual and decoupling operations[J]. Journal of Computer Applications, 2022, 42(1): 9-15.
张继杰, 杨艳, 刘勇. 利用初始残差和解耦操作的自适应深层图卷积[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 9-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071289
符号 | 含义 |
---|---|
节点集 | |
图中节点的集合 | |
图中边的集合 | |
初始的节点特征矩阵 | |
标签矩阵 | |
用于预测的节点表示矩阵 | |
MLP | 多层感知机 |
初始的节点特征维度 | |
图卷积层数 | |
残差保留率 | |
节点类别数 | |
节点 |
Tab. 1 Symbols and their definition
符号 | 含义 |
---|---|
节点集 | |
图中节点的集合 | |
图中边的集合 | |
初始的节点特征矩阵 | |
标签矩阵 | |
用于预测的节点表示矩阵 | |
MLP | 多层感知机 |
初始的节点特征维度 | |
图卷积层数 | |
残差保留率 | |
节点类别数 | |
节点 |
数据集 | 节点数 | 边数 | 训练节点数 | 验证节点数 | 测试节点数 | 节点类别数 | 特征维度 | 边密度 |
---|---|---|---|---|---|---|---|---|
Cora | 2 708 | 5 278 | 140 | 500 | 1 000 | 7 | 1 433 | 0.001 4 |
CiteSeer | 3 327 | 4 552 | 120 | 500 | 1 000 | 6 | 3 703 | 0.000 8 |
PubMed | 19 717 | 44 324 | 60 | 500 | 1 000 | 3 | 500 | 0.000 2 |
Tab. 2 Citation datasets
数据集 | 节点数 | 边数 | 训练节点数 | 验证节点数 | 测试节点数 | 节点类别数 | 特征维度 | 边密度 |
---|---|---|---|---|---|---|---|---|
Cora | 2 708 | 5 278 | 140 | 500 | 1 000 | 7 | 1 433 | 0.001 4 |
CiteSeer | 3 327 | 4 552 | 120 | 500 | 1 000 | 6 | 3 703 | 0.000 8 |
PubMed | 19 717 | 44 324 | 60 | 500 | 1 000 | 3 | 500 | 0.000 2 |
模型 | Cora | CiteSeer | PubMed |
---|---|---|---|
ChebNet | 80.6±1.1 | 70.0±1.3 | 78.1±0.6 |
GCN | 81.3±0.6 | 71.1±0.8 | 78.9±0.5 |
GAT | 83.1±0.4 | 70.8±0.5 | 79.0±0.3 |
SGC | 81.7±0.1 | 71.3±0.3 | 78.9±0.0 |
APPNP | 83.2±0.4 | 71.8±0.5 | 80.2±0.3 |
DAGNN | 84.4±0.5 | 73.3±0.6 | 80.5±0.5 |
ID-AGCN | 84.7±0.6 | 73.4±0.6 | 80.8±0.4 |
Tab. 3 Classification accuracy results for citation datasets
模型 | Cora | CiteSeer | PubMed |
---|---|---|---|
ChebNet | 80.6±1.1 | 70.0±1.3 | 78.1±0.6 |
GCN | 81.3±0.6 | 71.1±0.8 | 78.9±0.5 |
GAT | 83.1±0.4 | 70.8±0.5 | 79.0±0.3 |
SGC | 81.7±0.1 | 71.3±0.3 | 78.9±0.0 |
APPNP | 83.2±0.4 | 71.8±0.5 | 80.2±0.3 |
DAGNN | 84.4±0.5 | 73.3±0.6 | 80.5±0.5 |
ID-AGCN | 84.7±0.6 | 73.4±0.6 | 80.8±0.4 |
数据集 | 残差 保留率 | 图卷积 层数 | weight decay | dropout rate | 学习率 |
---|---|---|---|---|---|
Cora | 0.02 | 15 | 0.005 | 0.85 | 0.01 |
CiteSeer | 0.05 | 10 | 0.020 | 0.55 | 0.01 |
PubMed | 0.01 | 35 | 0.010 | 0.85 | 0.01 |
Tab. 4 Parameter setting
数据集 | 残差 保留率 | 图卷积 层数 | weight decay | dropout rate | 学习率 |
---|---|---|---|---|---|
Cora | 0.02 | 15 | 0.005 | 0.85 | 0.01 |
CiteSeer | 0.05 | 10 | 0.020 | 0.55 | 0.01 |
PubMed | 0.01 | 35 | 0.010 | 0.85 | 0.01 |
模型 | 最优层数 | 分类准确率/% | 运行时间/s |
---|---|---|---|
ChebNet | 3 | 80.6±1.1 | 2.57 |
GCN | 2 | 81.3±0.6 | 1.85 |
GAT | 2 | 83.1±0.4 | 7.38 |
SGC | 3 | 81.7±0.1 | 1.50 |
APPNP | 10 | 83.2±0.4 | 1.61 |
DAGNN | 10 | 84.4±0.5 | 4.31 |
ID-AGCN | 15 | 84.7±0.6 | 4.48 |
Tab. 5 Classification accuracy and running time comparison of different models
模型 | 最优层数 | 分类准确率/% | 运行时间/s |
---|---|---|---|
ChebNet | 3 | 80.6±1.1 | 2.57 |
GCN | 2 | 81.3±0.6 | 1.85 |
GAT | 2 | 83.1±0.4 | 7.38 |
SGC | 3 | 81.7±0.1 | 1.50 |
APPNP | 10 | 83.2±0.4 | 1.61 |
DAGNN | 10 | 84.4±0.5 | 4.31 |
ID-AGCN | 15 | 84.7±0.6 | 4.48 |
1 | WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]// Proceedings of the 42nd International Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 235-244. 10.1145/3331184.3331214 |
2 | FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. 10.1145/3308558.3313488 |
3 | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. 10.1145/3308558.3313417 |
4 | JIN W G, COLEY C W, BARZILAY R, et al. Predicting organic reaction outcomes with Weisfeiler-Lehman network[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2607-2616. |
5 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-01-20]. . |
6 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-02-10].. |
7 | 涂存超,杨成,刘知远,等. 网络表示学习综述[J]. 中国科学:信息科学, 2017, 47(8): 980-996. 10.1360/n112017-00145 |
TU C C, YANG C, LIU Z Y, et al. Network representation learning: an overview[J]. SCIENTIA SINICA Informationis, 2017, 47(8): 980-996. 10.1360/n112017-00145 | |
8 | LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3538-3545. |
9 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
10 | PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bring order to the Web[R]. Stanford: Stanford InfoLab, 1999. |
11 | KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S. Predict then propagate: graph neural networks meet personalized PageRank[EB/OL]. (2019-02-27) [2021-02-20].. 10.1145/3394486.3403296 |
12 | CHIANG W L, LIU X Q, SI S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 257-266. 10.1145/3292500.3330925 |
13 | CHEN M, WEI Z W, HUANG Z F, et al. Simple and deep graph convolutional networks[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. |
14 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
15 | ZHAO L X, AKOGLU L. PairNorm: tackling over-smoothing in GNNs[EB/OL]. (2020-02-13) [2021-02-25].. |
16 | RONG Y, HUANG W B, XU T Y, et al. DropEdge: towards deep graph convolutional networks on node classification[EB/OL]. (2020-03-12) [2021-03-05]. . 10.1007/978-3-030-75765-6_6 |
17 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
18 | FENG W Z, ZHANG J, DONG Y X, et al. Graph random neural networks for semi-supervised learning on graphs[C/OL]// Proceedings of the 34th International Conference on Neural Information Processing Systems. (2020-10-26) [2021-03-05].. |
19 | LIU M, GAO H Y, JI S W. Towards deeper graph neural networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 338-348. 10.1145/3394486.3403076 |
20 | WU F, ZHANG T Y, DE SOUZA A H, et al. Simplifying graph convolutional networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. |
21 | 张璞,柴变芳,张静,等. 半监督属性网络表示学习方法[J]. 计算机工程与应用, 2019, 55(12): 117-123, 144. 10.3778/j.issn.1002-8331.1812-0079 |
ZHANG P, CHAI B F, ZHANG J, et al. Semi-supervised representation learning method for attributed networks[J]. Computer Engineering and Applications, 2019, 55(12): 117-123, 144. 10.3778/j.issn.1002-8331.1812-0079 | |
22 | YANG Z L, COHEN W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 40-48. |
23 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. |
[1] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[2] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[3] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[4] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[5] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[6] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[7] | Le YANG, Damin ZHANG, Qing HE, Jiaxin DENG, Fengqin ZUO. Application of improved hunter-prey optimization algorithm in WSN coverage [J]. Journal of Computer Applications, 2024, 44(8): 2506-2513. |
[8] | Hang XU, Zhi YANG, Xingyuan CHEN, Bing HAN, Xuehui DU. Coverage-guided fuzzing based on adaptive sensitive region mutation [J]. Journal of Computer Applications, 2024, 44(8): 2528-2535. |
[9] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. |
[12] | Jinfu WU, Yi LIU. Fast adversarial training method based on random noise and adaptive step size [J]. Journal of Computer Applications, 2024, 44(6): 1807-1815. |
[13] | Chao GE, Jiabin ZHANG, Lei WANG, Zhixin LUN. Trajectory planning for autonomous vehicles based on model predictive control [J]. Journal of Computer Applications, 2024, 44(6): 1959-1964. |
[14] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[15] | Wenping ZHENG, Huilin GE, Meilin LIU, Gui YANG. Node classification algorithm fusing 2-connected motif-structure information [J]. Journal of Computer Applications, 2024, 44(5): 1464-1470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||