Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (9): 2855-2862.DOI: 10.11772/j.issn.1001-9081.2023081221
• Network and communications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                    Chuanlin PANG1, Rui TANG2( ), Ruizhi ZHANG3, Chuan LIU2, Jia LIU2, Shibo YUE1
), Ruizhi ZHANG3, Chuan LIU2, Jia LIU2, Shibo YUE1
												  
						
						
						
					
				
Received:2023-09-08
															
							
																	Revised:2023-10-23
															
							
																	Accepted:2023-11-02
															
							
							
																	Online:2024-09-14
															
							
																	Published:2024-09-10
															
							
						Contact:
								Rui TANG   
													About author:PANG Chuanlin, born in 1997, M. S. candidate. His research interests include deep reinforcement learning algorithms.Supported by:
        
                   
            庞川林1, 唐睿2( ), 张睿智3, 刘川2, 刘佳2, 岳士博1
), 张睿智3, 刘川2, 刘佳2, 岳士博1
                  
        
        
        
        
    
通讯作者:
					唐睿
							作者简介:庞川林(1997—),男,四川南充人,硕士研究生,主要研究方向:深度强化学习算法;基金资助:CLC Number:
Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems[J]. Journal of Computer Applications, 2024, 44(9): 2855-2862.
庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081221
| 参数 | 设置1 | 设置2 | 
|---|---|---|
| 小区半径 | 300 m | 500 m | 
| D2D通信对距离 | 5~50 m | 10~60 m | 
| D2D通信对发射功率 | 0~200 mW | 0~200 mW | 
| 路径损耗[ | ||
| 阴影衰落 | ||
| 小尺度衰落 | ||
| 高斯白噪声 | -113 dBm | -113 dBm | 
| 求和权重 | [0.5,1] | [0.5,1] | 
Tab. 1 System parameters
| 参数 | 设置1 | 设置2 | 
|---|---|---|
| 小区半径 | 300 m | 500 m | 
| D2D通信对距离 | 5~50 m | 10~60 m | 
| D2D通信对发射功率 | 0~200 mW | 0~200 mW | 
| 路径损耗[ | ||
| 阴影衰落 | ||
| 小尺度衰落 | ||
| 高斯白噪声 | -113 dBm | -113 dBm | 
| 求和权重 | [0.5,1] | [0.5,1] | 
| 参数 | 值 | 
|---|---|
| 8 | |
| 16 | |
| 2 | |
| (16,24) | |
| 图卷积层激活函数 | ReLU | 
| 2 | |
| (32,16) | |
| 隐藏层激活函数 | ReLU | 
| 输出层激活函数 | Sigmoid | 
| 优化器 | Adam | 
| 学习率 | 0.001 | 
Tab. 2 Hyperparameter setting in GCN-based decision model
| 参数 | 值 | 
|---|---|
| 8 | |
| 16 | |
| 2 | |
| (16,24) | |
| 图卷积层激活函数 | ReLU | 
| 2 | |
| (32,16) | |
| 隐藏层激活函数 | ReLU | 
| 输出层激活函数 | Sigmoid | 
| 优化器 | Adam | 
| 学习率 | 0.001 | 
| 算法 | 在线运算复杂度 | 算法 | 在线运算复杂度 | 
|---|---|---|---|
| DDPG | SAC | ||
| FP | 本文算法 | 
Tab. 3 Online computational complexity of different algorithms
| 算法 | 在线运算复杂度 | 算法 | 在线运算复杂度 | 
|---|---|---|---|
| DDPG | SAC | ||
| FP | 本文算法 | 
| 算法 | M=10 | M=15 | M=20 | M=25 | M=30 | 
|---|---|---|---|---|---|
| DDPG | 13.57 | 13.92 | 14.25 | 14.56 | 14.83 | 
| SAC | 13.48 | 13.87 | 14.23 | 14.53 | 14.78 | 
| FP | 358.40 | 435.80 | 517.70 | 615.30 | 718.60 | 
| MO | 6.215 | 1.327 | 2.736 | 5.642 | 1.187 | 
| 本文算法 | 11.86 | 12.05 | 12.28 | 12.46 | 12.73 | 
Tab. 4 Comparison of running time varying with change in number of D2D pairs of different algorithms
| 算法 | M=10 | M=15 | M=20 | M=25 | M=30 | 
|---|---|---|---|---|---|
| DDPG | 13.57 | 13.92 | 14.25 | 14.56 | 14.83 | 
| SAC | 13.48 | 13.87 | 14.23 | 14.53 | 14.78 | 
| FP | 358.40 | 435.80 | 517.70 | 615.30 | 718.60 | 
| MO | 6.215 | 1.327 | 2.736 | 5.642 | 1.187 | 
| 本文算法 | 11.86 | 12.05 | 12.28 | 12.46 | 12.73 | 
| 算法 | 系统参数设置1 | 系统参数设置2 | |
|---|---|---|---|
| 实验1 | 实验2 | ||
| DDPG | 112.5 | 141.7 | 141.4 | 
| SAC | 113.8 | 142.5 | 142.9 | 
| FP | 115.6 | 146.4 | 146.6 | 
| MO | 116.9 | 148.8 | 148.8 | 
| 本文算法 | 114.7 | 144.3 | 144.1 | 
Tab. 5 Average transmit power of D2D pairs (M=20)
| 算法 | 系统参数设置1 | 系统参数设置2 | |
|---|---|---|---|
| 实验1 | 实验2 | ||
| DDPG | 112.5 | 141.7 | 141.4 | 
| SAC | 113.8 | 142.5 | 142.9 | 
| FP | 115.6 | 146.4 | 146.6 | 
| MO | 116.9 | 148.8 | 148.8 | 
| 本文算法 | 114.7 | 144.3 | 144.1 | 
| 1 | ZHANG S, LIU J, GUO H, et al. Envisioning device-to-device communications in 6G [J]. IEEE Network, 2020, 34(3): 86-91. | 
| 2 | HAN Y, LIU L, DUAN L, et al. Towards reliable UAV swarm communication in D2D-enhanced cellular networks [J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1567-1581. | 
| 3 | MAO S, CHU X, WU Q, et al. Intelligent reflecting surface enhanced D2D cooperative computing [J]. IEEE Wireless Communications Letters, 2021, 10(7): 1419-1423. | 
| 4 | 李余,何希平,唐亮贵. 基于终端直通通信的多用户计算卸载资源优化决策[J]. 计算机应用, 2022, 42(5): 1538-1546. | 
| LI Y, HE X P, TANG L G. Multi-user computation offloading and resource optimization policy based on device-to-device communication [J]. Journal of Computer Applications, 2022, 42(5): 1538-1546. | |
| 5 | CHIANG M, HANDE P, LAN T, et al. Power control in wireless cellular networks [J]. Foundations and Trends in Networking, 2008, 2(4): 381-533. | 
| 6 | SHI Q, RAZAVIYAYN M, LUO Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4331-4340. | 
| 7 | TANG R, ZHAO J, QU H, et al. User-centric joint admission control and resource allocation for 5G D2D extreme mobile broadband: a sequential convex programming approach [J]. IEEE Communications Letters, 2017, 21(7): 1641-1644. | 
| 8 | TANG R, ZHAO J, QU H. Performance tradeoff between energy conservation and user fairness for D2D communication underlaying cellular networks [J]. Chinese Journal of Electronics, 2017, 26(3): 600-607. | 
| 9 | 尼俊红,申振涛,杨会峰. 蜂窝网络下基于max-min公平性的D2D功率分配[J]. 计算机应用, 2017, 37(4): 945-947. | 
| NI J H, SHEN Z T, YANG H F. D2D power allocation based on max-min fairness underlying cellular systems [J]. Journal of Computer Applications, 2017, 37(4): 945-947. | |
| 10 | SHEN K, YU W. FPLinQ: a cooperative spectrum sharing strategy for device-to-device communications [C]// Proceedings of the 2017 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2017: 2323-2327. | 
| 11 | SHEN K, YU W. Fractional programming for communication systems — part Ⅱ: uplink scheduling via matching [J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2631-2644. | 
| 12 | SUN H, CHEN X, SHI Q, et al. Learning to optimize: training deep neural networks for interference management [J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5438-5453. | 
| 13 | NASIR Y S, GUO D. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks [J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239-2250. | 
| 14 | 唐睿,何祖涵,张睿智,等. D2D-NOMA系统中混合离线-在线资源分配机制[J]. 信息与控制, 2023, 52(5):574-587. | 
| TANG R, HE Z H, ZHANG R Z, et al. Hybrid offline-online resource allocation mechanism for D2D-NOMA systems [J]. Information and Control, 2023, 52(5):574-587. | |
| 15 | 张先超,赵耀,叶海军,等. 无线网络多用户干扰下智能发射功率控制算法[J]. 通信学报, 2022, 43(2): 15-21. | 
| ZHANG X C, ZHAO Y, YE H J, et al. Intelligent transmit power control algorithm for the multi-user interference of wireless network [J]. Journal on Communications, 2022, 43(2): 15-21. | |
| 16 | BAN T W. A self-regulating power-control scheme using reinforcement learning for D2D communication networks [J]. Sensors, 2022, 22(13): No.4894. | 
| 17 | 唐睿,庞川林,张睿智,等. D2D通信增强的蜂窝网络中基于DDPG的资源分配[J]. 计算机应用, 2024, 44(5): 1562-1569. | 
| TANG R, PANG C L, ZHANG R Z, et al. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. | |
| 18 | JIA K, CHEN D, SUN X. Soft actor-critic based power control algorithm for anti-jamming in D2D communication [C]// Proceedings of the 2023 IEEE International Conference on Control, Electronics and Computer Technology. Piscataway: IEEE, 2023: 1-5. | 
| 19 | ZAPPONE A, DI RENZO M, DEBBAH M. Wireless networks design in the era of deep learning: model-based, AI-based, or both? [J]. IEEE Transactions on Communications, 2019, 67(10):7331-7376. | 
| 20 | ZHANG R, TANG R, XU Y, et al. Resource allocation for UAV-assisted NOMA systems with dual connectivity [J]. IEEE Wireless Communications Letters, 2023, 12(2): 341-345. | 
| 21 | SHEN K, YU W. Fractional programming for communication systems — part I: power control and beamforming [J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616-2630. | 
| 22 | SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. | 
| 23 | ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications [J]. AI Open, 2020, 1: 57-81. | 
| 24 | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. | 
| 25 | LEE M, YU G, DAI H, et al. Graph neural networks meet wireless communications: motivation, applications, and future directions [J]. IEEE Wireless Communications, 2022, 29(5): 12-19. | 
| 26 | BATTAGLIA P W, HAMRICK J B, BAPST V. Relational inductive biases, deep learning, and graph networks[EB/OL]. [2023-08-11]. . | 
| 27 | GILMER J, SCHOENHOLZ S S, RILEY P F. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017:1263-1272. | 
| 28 | LeCUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. | 
| 29 | ZAFAR A, AAMIR M, MOHD NAWI N, et al. A comparison of pooling methods for convolutional neural networks [J]. Applied Sciences, 2022, 12(17): 8643. | 
| 30 | LESHNO M, LIN V Y, PINKUS A, et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function [J]. Neural Networks, 1993, 6(6): 861-867. | 
| 31 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2023-08-13]. . | 
| 32 | TANG R, ZHANG R, XU Y, et al. Energy-efficient optimization algorithm in NOMA-based UAV-assisted data collection systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 158-162. | 
| 33 | TANG R, ZHANG R, ZHAO Y, et al. Power allocation for NOMA-based two-way full-duplex relaying systems [C]// Proceedings of the 2021 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2021: 1077-1082. | 
| 34 | TUY H. Monotonic optimization: problems and solution approaches [J]. SIAM Journal on Optimization, 2000, 11(2): 464-494. | 
| 35 | HERBERT S, WASSELL I, LOH T H, et al. Characterizing the spectral properties and time variation of the in-vehicle wireless communication channel [J]. IEEE Transactions on Communications, 2014, 62(7): 2390-2399. | 
| [1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [2] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [3] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. | 
| [4] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. | 
| [5] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. | 
| [6] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. | 
| [7] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. | 
| [8] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. | 
| [9] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. | 
| [10] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. | 
| [11] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. | 
| [12] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. | 
| [13] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. | 
| [14] | Yi ZHANG, Gangsheng CAI, Zhenmei WANG. Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2125-2132. | 
| [15] | Yuan WEI, Yan LIN, Shengnan GUO, Youfang LIN, Huaiyu WAN. Prediction of taxi demands between urban regions by fusing origin-destination spatial-temporal correlation [J]. Journal of Computer Applications, 2023, 43(7): 2100-2106. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||