Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2319-2325.DOI: 10.11772/j.issn.1001-9081.2021060993
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Bo YANG1, Hengwei ZHANG1(), Zheming LI1,2, Kaiyong XU1
Received:
2021-06-10
Revised:
2021-10-12
Accepted:
2021-10-29
Online:
2022-01-25
Published:
2022-08-10
Contact:
Hengwei ZHANG
About author:
YANG Bo, born in 1993, M. S. candidate. His research interests include deep learning, intelligent system security.Supported by:
通讯作者:
张恒巍
作者简介:
杨博(1993—),男,湖北咸宁人,硕士研究生,主要研究方向:深度学习、智能系统安全;基金资助:
CLC Number:
Bo YANG, Hengwei ZHANG, Zheming LI, Kaiyong XU. Adversarial example generation method based on image flipping transform[J]. Journal of Computer Applications, 2022, 42(8): 2319-2325.
杨博, 张恒巍, 李哲铭, 徐开勇. 基于图像翻转变换的对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2319-2325.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060993
网络模型 | 攻击方法 | 正常训练网络 | 对抗训练网络 | |||||
---|---|---|---|---|---|---|---|---|
Inc-v3 | Inc-v4 | IncRes-v2 | Res-101 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | ||
Inc-v3 | I-FGSM | 99.9* | 22.6 | 20.2 | 18.1 | 7.2 | 7.6 | 4.1 |
MI-FGSM | 99.9* | 48.1 | 47.1 | 39.9 | 15.2 | 14.2 | 7.2 | |
FT-MI-FGSM | 100.0* | 65.2 | 61.2 | 53.7 | 20.3 | 18.9 | 9.7 | |
Inc-v4 | I-FGSM | 37.9 | 99.9* | 26.2 | 21.9 | 8.7 | 8.0 | 5.0 |
MI-FGSM | 63.9 | 99.9* | 53.7 | 47.7 | 19.7 | 16.9 | 9.4 | |
FT-MI-FGSM | 74.4 | 99.9* | 65.5 | 56.6 | 23.3 | 19.7 | 10.6 | |
IncRes-v2 | I-FGSM | 37.2 | 31.8 | 99.6* | 25.9 | 8.9 | 7.5 | 4.9 |
MI-FGSM | 68.6 | 61.9 | 99.6* | 52.1 | 25.1 | 20.2 | 14.4 | |
FT-MI-FGSM | 78.4 | 72.2 | 99.1* | 63.2 | 32.9 | 26.6 | 18.4 | |
Res-101 | I-FGSM | 27.7 | 23.3 | 21.3 | 98.2* | 9.3 | 7.9 | 5.6 |
MI-FGSM | 52.4 | 48.2 | 45.6 | 98.2* | 22.3 | 18.6 | 11.8 | |
FT-MI-FGSM | 67.0 | 62.7 | 59.2 | 98.0* | 30.3 | 25.7 | 16.3 |
Tab. 1 Success rate comparison of single model attack
网络模型 | 攻击方法 | 正常训练网络 | 对抗训练网络 | |||||
---|---|---|---|---|---|---|---|---|
Inc-v3 | Inc-v4 | IncRes-v2 | Res-101 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | ||
Inc-v3 | I-FGSM | 99.9* | 22.6 | 20.2 | 18.1 | 7.2 | 7.6 | 4.1 |
MI-FGSM | 99.9* | 48.1 | 47.1 | 39.9 | 15.2 | 14.2 | 7.2 | |
FT-MI-FGSM | 100.0* | 65.2 | 61.2 | 53.7 | 20.3 | 18.9 | 9.7 | |
Inc-v4 | I-FGSM | 37.9 | 99.9* | 26.2 | 21.9 | 8.7 | 8.0 | 5.0 |
MI-FGSM | 63.9 | 99.9* | 53.7 | 47.7 | 19.7 | 16.9 | 9.4 | |
FT-MI-FGSM | 74.4 | 99.9* | 65.5 | 56.6 | 23.3 | 19.7 | 10.6 | |
IncRes-v2 | I-FGSM | 37.2 | 31.8 | 99.6* | 25.9 | 8.9 | 7.5 | 4.9 |
MI-FGSM | 68.6 | 61.9 | 99.6* | 52.1 | 25.1 | 20.2 | 14.4 | |
FT-MI-FGSM | 78.4 | 72.2 | 99.1* | 63.2 | 32.9 | 26.6 | 18.4 | |
Res-101 | I-FGSM | 27.7 | 23.3 | 21.3 | 98.2* | 9.3 | 7.9 | 5.6 |
MI-FGSM | 52.4 | 48.2 | 45.6 | 98.2* | 22.3 | 18.6 | 11.8 | |
FT-MI-FGSM | 67.0 | 62.7 | 59.2 | 98.0* | 30.3 | 25.7 | 16.3 |
攻击方法 | 白盒攻击 | 黑盒攻击 | 平均 | |||||
---|---|---|---|---|---|---|---|---|
Inc-v3 | Inc-v4 | IncRes-v2 | Res-101 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | ||
I-FGSM | 99.7 | 96.2 | 91.8 | 86.6 | 18.8 | 15.9 | 9.4 | 59.8 |
MI-FGSM | 99.8 | 97.6 | 95.0 | 91.1 | 38.5 | 36.0 | 22.5 | 68.6 |
FT-MI-FGSM | 98.9 | 97.6 | 94.7 | 91.2 | 48.2 | 45.6 | 28.2 | 72.1 |
Tab. 2 Success rate comparison of attacking ensemble models
攻击方法 | 白盒攻击 | 黑盒攻击 | 平均 | |||||
---|---|---|---|---|---|---|---|---|
Inc-v3 | Inc-v4 | IncRes-v2 | Res-101 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | ||
I-FGSM | 99.7 | 96.2 | 91.8 | 86.6 | 18.8 | 15.9 | 9.4 | 59.8 |
MI-FGSM | 99.8 | 97.6 | 95.0 | 91.1 | 38.5 | 36.0 | 22.5 | 68.6 |
FT-MI-FGSM | 98.9 | 97.6 | 94.7 | 91.2 | 48.2 | 45.6 | 28.2 | 72.1 |
数据集 | 生成对抗样本模型 | 检验对抗样本模型 | I-FGSM | MI-FGSM | FT-MI-FGSM |
---|---|---|---|---|---|
MNIST | MLPNet | LeNet | 2.15 | 2.91 | 3.24 |
LeNet | MLPNet | 4.21 | 4.75 | 5.46 | |
CIFAR10 | ResNet50 | VGG16 | 12.70 | 12.80 | 14.20 |
VGG16 | ResNet50 | 40.50 | 40.70 | 42.30 |
Tab. 3 Black-box attack success rate comparison on MNIST and CIFAR10 datasets
数据集 | 生成对抗样本模型 | 检验对抗样本模型 | I-FGSM | MI-FGSM | FT-MI-FGSM |
---|---|---|---|---|---|
MNIST | MLPNet | LeNet | 2.15 | 2.91 | 3.24 |
LeNet | MLPNet | 4.21 | 4.75 | 5.46 | |
CIFAR10 | ResNet50 | VGG16 | 12.70 | 12.80 | 14.20 |
VGG16 | ResNet50 | 40.50 | 40.70 | 42.30 |
1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
2 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-02-10]. . |
3 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
4 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
5 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-02-19) [2021-02-10]. . |
6 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20) [2021-02-10]. . |
7 | 刘雨佳. 针对神经网络的图像对抗样本生成及应用研究[D].合肥:中国科学技术大学,2019:19-20. |
LIU Y J. Generation and application of image adversarial examples for neural networks [D]. Hefei: University of Science and Technology of China, 2019: 19-20. | |
8 | LIU Y P, CHEN X Y, LIU C, et al. Delving into transferable adversarial examples and black-box attacks[EB/OL]. (2017-02-07) [2021-02-11]. . |
9 | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[EB/OL]. (2017-02-11) [2021-02-11]. . 10.1201/9781351251389-8 |
10 | DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9185-9193. 10.1109/cvpr.2018.00957 |
11 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-02-11]. . |
12 | SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning [C]// Proceedings of the 30th International Conference Machine Learning. New York: JMLR.org, 2013: 1139-1147. |
13 | HINTON G, SRIVASTAVA N, SWERSKY K. RMSProp: divide the gradient by a running average of its recent magnitude. [EB/OL]. [2021-02-11]. . |
14 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. 10.1007/s11263-015-0816-y |
15 | BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time [C]// Proceedings of the 2013 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 8190. Berlin: Springer, 2013: 387-402. |
16 | EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1625-1634. 10.1109/cvpr.2018.00175 |
17 | LECUN Y, CORTES C. MNIST handwritten digit database [DB/OL]. (2010-02-16) [2021-02-14]. . |
18 | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. (2019-09-04) [2021-02-13]. . |
19 | LIAO F Z, LIANG M, DONG Y P, et al. Defense against adversarial attacks using high-level representation guided denoiser [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1778-1787. 10.1109/cvpr.2018.00191 |
20 | GUO C, RANA M, CISSÉ M, et al. Countering adversarial images using input transformations[EB/OL]. (2018-01-25) [2021-02-13]. . |
21 | SAMANGOUEI P, KABKAB M, CHELLAPPA R. Defense-GAN: protecting classifiers against adversarial attacks using generative models[EB/OL]. (2018-05-18) [2021-02-13]. . |
22 | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial machine learning at scale[EB/OL]. (2017-02-11) [2021-02-14]. . 10.1201/9781351251389-8 |
23 | TRAMÈR F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: attacks and defenses[EB/OL]. (2020-04-26) [2021-02-14]. . |
24 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
25 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284. 10.1609/aaai.v31i1.11231 |
26 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645. |
27 | KRIZHEVSKY A. Learning multiple layers of features from tiny images [EB/OL]. (2009-03-12) [2021-02-14]. . |
28 | XIAO Y T, PUN C M. Improving adversarial attacks on deep neural networks via constricted gradient-based perturbations[J]. Information Sciences, 2021, 571: 104-132. 10.1016/j.ins.2021.04.033 |
[1] | Rui SHI, Yong LI, Yanhan ZHU. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient [J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. |
[2] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[3] | Jinfu WU, Yi LIU. Fast adversarial training method based on random noise and adaptive step size [J]. Journal of Computer Applications, 2024, 44(6): 1807-1815. |
[4] | Bin XIAO, Mo YANG, Min WANG, Guangyuan QIN, Huan LI. Domain generalization method of phase-frequency fusion from independent perspective [J]. Journal of Computer Applications, 2024, 44(4): 1002-1009. |
[5] | Yu ZHANG, Yan CHANG, Shibin ZHANG. Adversarial example detection algorithm based on quantum local intrinsic dimensionality [J]. Journal of Computer Applications, 2024, 44(2): 490-495. |
[6] | Mengmei YAN, Dongping YANG. Review of mean field theory for deep neural network [J]. Journal of Computer Applications, 2024, 44(2): 331-343. |
[7] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
[8] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
[9] | Tong CHEN, Jiwei WEI, Shiyuan HE, Jingkuan SONG, Yang YANG. Adversarial training method with adaptive attack strength [J]. Journal of Computer Applications, 2024, 44(1): 94-100. |
[10] | Yunfei SHEN, Fei SHEN, Fang LI, Jun ZHANG. Deep neural network model acceleration method based on tensor virtual machine [J]. Journal of Computer Applications, 2023, 43(9): 2836-2844. |
[11] | Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism [J]. Journal of Computer Applications, 2023, 43(9): 2686-2691. |
[12] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[13] | Gan LI, Mingdi NIU, Lu CHEN, Jing YANG, Tao YAN, Bin CHEN. Robotic grasp detection in low-light environment by incorporating visual feature enhancement mechanism [J]. Journal of Computer Applications, 2023, 43(8): 2564-2571. |
[14] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[15] | Yuhang LI, Yuli YANG, Yao MA, Dan YU, Yongle CHEN. Text adversarial example generation method based on BERT model [J]. Journal of Computer Applications, 2023, 43(10): 3093-3098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||