Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1862-1868.DOI: 10.11772/j.issn.1001-9081.2021040582
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Received:2021-04-15
Revised:2021-07-09
Accepted:2021-07-15
Online:2022-06-22
Published:2022-06-10
Contact:
Xiaoyan HAO
About author:HAN Yumin,born in 1995,M. S. His research interests include natural language processing.
Supported by:通讯作者:
郝晓燕
作者简介:韩玉民(1995—),男,山西临汾人,硕士,主要研究方向:自然语言处理
基金资助:CLC Number:
Yumin HAN, Xiaoyan HAO. Material entity recognition based on subword embedding and relative attention[J]. Journal of Computer Applications, 2022, 42(6): 1862-1868.
韩玉民, 郝晓燕. 基于子词嵌入和相对注意力的材料实体识别[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1862-1868.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040582
| 类别 | 标签 | 数量 | 示例 |
|---|---|---|---|
| 非实体 | O | — | resulting, significantly |
| 材料 | B-M I-M | 1 492 | GDC, YSZ, Ba0.5Sr0.5, hydrogen |
| 参数 | B-V I-V | 1 475 | 270 mW, 1 mm bellow 600℃ |
| 设备 | B-D I-D | 533 | fuel cell, SOFC, micro-solid oxide fuel cell |
| 实验 | B-E I-E | 1 090 | fabricated, characterized, compared, demonstrated |
Tab. 1 Label distribution of SOFC NER dataset
| 类别 | 标签 | 数量 | 示例 |
|---|---|---|---|
| 非实体 | O | — | resulting, significantly |
| 材料 | B-M I-M | 1 492 | GDC, YSZ, Ba0.5Sr0.5, hydrogen |
| 参数 | B-V I-V | 1 475 | 270 mW, 1 mm bellow 600℃ |
| 设备 | B-D I-D | 533 | fuel cell, SOFC, micro-solid oxide fuel cell |
| 实验 | B-E I-E | 1 090 | fabricated, characterized, compared, demonstrated |
| 类别 | 细粒度类别 |
|---|---|
| 材料(MATERIAL) | anode_material, cathode_material, electrolyte_material, fuel_used, interconnect_material, interlayer_material, support_material |
| 参数(VALUE) | conductivity, current_density, degradation_rate, open_circuit_voltage, power_density, resistance, thickness, time_of_operation, voltage, working_temperature |
| 设备(DEVICE) | device |
| 实验(EXPERIMENT) | experiment_evoking_word |
Tab. 2 Label categories of SOFC Fine-grained entity recognition dataset
| 类别 | 细粒度类别 |
|---|---|
| 材料(MATERIAL) | anode_material, cathode_material, electrolyte_material, fuel_used, interconnect_material, interlayer_material, support_material |
| 参数(VALUE) | conductivity, current_density, degradation_rate, open_circuit_voltage, power_density, resistance, thickness, time_of_operation, voltage, working_temperature |
| 设备(DEVICE) | device |
| 实验(EXPERIMENT) | experiment_evoking_word |
| 模型参数 | 值 |
|---|---|
| ULM分词结果(包括噪声) | 3 |
| LSTM隐层维数 | 600 |
| RMHA隐层维数 | 600 |
| RMHA多头数目 | 12 |
| RMHA归一化参数 | 1 |
| 全局学习率 | 0.001 |
| CRF层学习率 | 0.1 |
Tab. 3 Model parameter setting
| 模型参数 | 值 |
|---|---|
| ULM分词结果(包括噪声) | 3 |
| LSTM隐层维数 | 600 |
| RMHA隐层维数 | 600 |
| RMHA多头数目 | 12 |
| RMHA归一化参数 | 1 |
| 全局学习率 | 0.001 |
| CRF层学习率 | 0.1 |
| 模型 | SOFC | SOFC Fine-grained | ||||||
|---|---|---|---|---|---|---|---|---|
| F1 | Micro F1 | Macro F1 | Micro F1 | Macro F1 | ||||
| DEVICE | EXPERIMENT | MATERIAL | VALUE | |||||
| 本文模型 | 85.03 | 79.04 | 81.88 | 94.40 | 87.63 | 85.09 | 79.09 | 74.42 |
| BiLSTM-CNNs-CRF | 80.45 | 75.89 | 79.07 | 94.88 | 86.05 | 82.57 | 75.97 | 67.97 |
| LM-LSTM-CRF | 81.62 | 76.19 | 80.40 | 94.17 | 86.45 | 83.09 | 76.71 | 70.74 |
| BiGRU-SelfAttn | 75.24 | 73.57 | 81.11 | 92.28 | 84.83 | 80.55 | 73.01 | 65.63 |
| SciBERT | 72.70 | 84.50 | 77.00 | 91.60 | 82.97 | 81.50 | 75.74 | 68.61 |
| Char-Level CNN-LSTM | 81.57 | 76.21 | 77.55 | 94.32 | 85.62 | 82.41 | 76.98 | 71.16 |
Tab. 4 Experimental results of different models on SOFC NER and Fine-grained entity recognition datasets
| 模型 | SOFC | SOFC Fine-grained | ||||||
|---|---|---|---|---|---|---|---|---|
| F1 | Micro F1 | Macro F1 | Micro F1 | Macro F1 | ||||
| DEVICE | EXPERIMENT | MATERIAL | VALUE | |||||
| 本文模型 | 85.03 | 79.04 | 81.88 | 94.40 | 87.63 | 85.09 | 79.09 | 74.42 |
| BiLSTM-CNNs-CRF | 80.45 | 75.89 | 79.07 | 94.88 | 86.05 | 82.57 | 75.97 | 67.97 |
| LM-LSTM-CRF | 81.62 | 76.19 | 80.40 | 94.17 | 86.45 | 83.09 | 76.71 | 70.74 |
| BiGRU-SelfAttn | 75.24 | 73.57 | 81.11 | 92.28 | 84.83 | 80.55 | 73.01 | 65.63 |
| SciBERT | 72.70 | 84.50 | 77.00 | 91.60 | 82.97 | 81.50 | 75.74 | 68.61 |
| Char-Level CNN-LSTM | 81.57 | 76.21 | 77.55 | 94.32 | 85.62 | 82.41 | 76.98 | 71.16 |
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-CRF | 72.83 | 70.47 | 63.12 | 51.16 |
| +RMHA | 75.43 | 73.40 | 66.26 | 52.70 |
| +ULM | 87.72 | 84.22 | 76.93 | 70.12 |
| +RMHA+ULM | 87.63 | 85.09 | 79.09 | 74.42 |
Tab. 5 Ablation experimental results
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-CRF | 72.83 | 70.47 | 63.12 | 51.16 |
| +RMHA | 75.43 | 73.40 | 66.26 | 52.70 |
| +ULM | 87.72 | 84.22 | 76.93 | 70.12 |
| +RMHA+ULM | 87.63 | 85.09 | 79.09 | 74.42 |
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-RMHA-CRF | 75.43 | 73.40 | 66.26 | 52.70 |
| +Char-level CNN | 87.74 | 83.38 | 78.04 | 71.33 |
| +BPEmb | 88.36 | 84.34 | 75.40 | 67.95 |
| +ULM | 87.63 | 85.09 | 79.09 | 74.42 |
| +BPEmb+ULM | 87.69 | 84.58 | 80.38 | 76.02 |
Tab. 6 Word embedding experimental results
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-RMHA-CRF | 75.43 | 73.40 | 66.26 | 52.70 |
| +Char-level CNN | 87.74 | 83.38 | 78.04 | 71.33 |
| +BPEmb | 88.36 | 84.34 | 75.40 | 67.95 |
| +ULM | 87.63 | 85.09 | 79.09 | 74.42 |
| +BPEmb+ULM | 87.69 | 84.58 | 80.38 | 76.02 |
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-CRF | 87.72 | 84.22 | 76.93 | 70.12 |
| +CNN | 87.07 | 82.93 | 76.60 | 69.73 |
| +SA | 87.84 | 84.44 | 74.96 | 69.28 |
| +MHA | 86.63 | 83.27 | 76.33 | 70.99 |
| +RMHA | 87.63 | 85.09 | 79.09 | 74.42 |
Tab. 7 Feature encoder experimental results
| 模型 | SOFC | SOFC Fine-grained | ||
|---|---|---|---|---|
| Micro F1 | Macro F1 | Micro F1 | Macro F1 | |
| BiLSTM-CRF | 87.72 | 84.22 | 76.93 | 70.12 |
| +CNN | 87.07 | 82.93 | 76.60 | 69.73 |
| +SA | 87.84 | 84.44 | 74.96 | 69.28 |
| +MHA | 86.63 | 83.27 | 76.33 | 70.99 |
| +RMHA | 87.63 | 85.09 | 79.09 | 74.42 |
| 1 | LAFFERTY J D, McCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289. |
| 2 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746 - 1751. 10.3115/v1/d14-1181 |
| 3 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. 10.1162/neco.1997.9.8.1735 |
| 4 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11) [2021-02-13]. . 10.1007/978-3-662-44848-9_34 |
| 5 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8 |
| 6 | MA X Z, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 1064-1074. 10.18653/v1/p16-1101 |
| 7 | CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. 10.1162/tacl_a_00104 |
| 8 | LIU L Y, SHANG J B, Ren x, et al. Empower sequence labeling with task-aware neural language model[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 5253-5260. |
| 9 | DHRISYA K, REMYA G, MOHAN A. Fine-grained entity type classification using GRU with self-attention[J]. International Journal of Information Technology, 2020, 12(3): 869-878. 10.1007/s41870-020-00499-5 |
| 10 | 杨维,孙德艳,张晓慧,等. 面向电力智能问答系统的命名实体识别算法[J]. 计算机工程与设计, 2019, 40(12) : 3625-3630. |
| YANG W, SUN D Y, ZHANG X H, et al. Named entity recognition for intelligent answer system in power service[J]. Computer Engineering and Design, 2019, 40(12): 3625-3630. | |
| 11 | 李博,康晓东,张华丽,等. 采用Transformer-CRF的中文电子病历命名实体识别[J]. 计算机工程与应用, 2020, 56(5):153-159. |
| LI B, KANG X D, ZHANG H L, et al. Named entity recognition in Chinese electronic medical records using Transformer-CRF[J]. Computer Engineering and Applications, 2020, 56(5):153-159. | |
| 12 | 张华丽,康晓东,李博,等. 结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别[J]. 计算机应用, 2020, 40(S1):98-102. 10.11772/j.issn.1001-9081.2019081371 |
| ZHANG H L, KANG X D, LI B, et al. Medical name entity recognition based on Bi-LSTM-CRF and attention mechanism[J]. Journal of Computer Applications, 2020, 40(S1):98-102. 10.11772/j.issn.1001-9081.2019081371 | |
| 13 | 张心怡,冯仕民,丁恩杰. 面向煤矿的实体识别与关系抽取模型[J]. 计算机应用, 2020, 40(8):2182-2188. 10.11772/j.issn.1001-9081.2019122255 |
| ZHANG X Y, FENG S M, DING E J. Entity recognition and relation extraction model for coal mine[J]. Journal of Computer Applications, 2020, 40(8):2182-2188. 10.11772/j.issn.1001-9081.2019122255 | |
| 14 | 许力,李建华. 基于句法依存分析的图网络生物医学命名实体识别[J]. 计算机应用, 2021, 41(2):357-362. 10.11772/j.issn.1001-9081.2020050738 |
| XU L, LI J H. Biomedical named entity recognition with graph network based on syntactic dependency parsing[J]. Journal of Computer Applications, 2021, 41(2):357-362. 10.11772/j.issn.1001-9081.2020050738 | |
| 15 | MYSORE S, KIM E, STRUBELL E, et al. Automatically extracting action graphs from materials science synthesis procedures[EB/OL]. (2017-11-28) [2021-02-13].. 10.18653/v1/w19-4007 |
| 16 | MYSORE S, JENSEN Z, KIM E, et al. The materials science procedural text corpus: annotating materials synthesis procedures with shallow semantic structures[C]// Proceedings of the 13th Linguistic Annotation Workshop. Stroudsburg, PA: Association for Computational Linguistics, 2019: 56-64. 10.18653/v1/w19-4007 |
| 17 | MRDJENOVICH D, HORTON M K, MONTOYA J H, et al. propnet: a knowledge graph for materials science[J]. Matter, 2020, 2(2): 464-480. 10.1016/j.matt.2019.11.013 |
| 18 | FRIEDRICH A, ADEL H, TOMAZIC F, et al. The SOFC-Exp corpus and neural approaches to information extraction in the materials science domain[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 1255-1268. 10.18653/v1/2020.acl-main.116 |
| 19 | GAJENDRAN S, MANJULA D, SUGUMARAN V. Character level and word level embedding with bidirectional LSTM - dynamic recurrent neural network for biomedical named entity recognition from literature[J]. Journal of Biomedical Informatics, 2020, 112: No.103609. 10.1016/j.jbi.2020.103609 |
| 20 | CHO M, HA J, PARK C, et al. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition[J]. Journal of Biomedical Informatics, 2020, 103: No.103381. 10.1016/j.jbi.2020.103381 |
| 21 | YAN H, DENG B C, LI X N, et al. TENER: adapting transformer encoder for named entity recognition[EB/OL]. (2019-12-10) [2021-02-13].. |
| 22 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07) [2021-02-13].. 10.3126/jiee.v3i1.34327 |
| 23 | HEINZERLING B, STRUBE M. BPEmb: tokenization-free pre-trained subword embeddings in 275 languages[C]// Proceedings of the 11th International Conference on Language Resources and Evaluation . Stroudsburg, PA: Association for Computational Linguistics, 2018: 2989-2993. 10.18653/v1/p19-1027 |
| 24 | KUDO T. Subword regularization: improving neural network translation models with multiple subword candidates[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 66-75. 10.18653/v1/p18-1007 |
| 25 | LIU Z H, WINATA G I, XU P, et al. Coach: a coarse-to-fine approach for cross-domain slot filling[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 19-25.). 10.18653/v1/2020.acl-main.3 |
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
| [2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
| [3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
| [4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
| [5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
| [6] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
| [7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
| [8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
| [9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
| [10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
| [11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
| [12] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
| [13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
| [14] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
| [15] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
