Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 1993-2000.DOI: 10.11772/j.issn.1001-9081.2021050812
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Juan WANG1,2,3, Xuliang YUAN1, Minghu WU1,2,3(), Liquan GUO1, Zishan LIU1
Received:
2021-05-18
Revised:
2021-09-22
Accepted:
2021-09-24
Online:
2022-07-15
Published:
2022-07-10
Contact:
Minghu WU
About author:
WANG Juan, born in 1983, Ph. D., associate professor. Her research interests include artificial intelligence, computer vision, deep learning.Supported by:
王娟1,2,3, 袁旭亮1, 武明虎1,2,3(), 郭力权1, 刘子杉1
通讯作者:
武明虎
作者简介:
王娟(1983—),女,湖北武汉人,副教授,博士,主要研究方向:人工智能、计算机视觉、深度学习基金资助:
CLC Number:
Juan WANG, Xuliang YUAN, Minghu WU, Liquan GUO, Zishan LIU. Real-time semantic segmentation method based on squeezing and refining network[J]. Journal of Computer Applications, 2022, 42(7): 1993-2000.
王娟, 袁旭亮, 武明虎, 郭力权, 刘子杉. 基于压缩提炼网络的实时语义分割方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 1993-2000.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050812
算法 | 320×480×3 | 640×960×3 | 512×1 024×3 | |||
---|---|---|---|---|---|---|
每帧推理 时间/ms | 推理 速度/ FPS | 每帧推理 时间/ms | 推理 速度/ FPS | 每帧推理 时间/ms | 推理 速度/ FPS | |
ENet[ | 39 | 25.60 | 124 | 8.0 | 101 | 9.9 |
SegNet[ | 160 | 6.25 | 515 | 1.9 | 457 | 1.9 |
SQNet[ | 23 | 43.40 | 60 | 16.6 | 52 | 19.2 |
ERFNet[ | 37 | 27.00 | 76 | 13.1 | 67 | 14.9 |
本文算法 | 57 | 17.50 | 85 | 11.7 | 79 | 12.6 |
Tab. 1 Real-time performance comparison of the proposed algorithm and baseline algorithms
算法 | 320×480×3 | 640×960×3 | 512×1 024×3 | |||
---|---|---|---|---|---|---|
每帧推理 时间/ms | 推理 速度/ FPS | 每帧推理 时间/ms | 推理 速度/ FPS | 每帧推理 时间/ms | 推理 速度/ FPS | |
ENet[ | 39 | 25.60 | 124 | 8.0 | 101 | 9.9 |
SegNet[ | 160 | 6.25 | 515 | 1.9 | 457 | 1.9 |
SQNet[ | 23 | 43.40 | 60 | 16.6 | 52 | 19.2 |
ERFNet[ | 37 | 27.00 | 76 | 13.1 | 67 | 14.9 |
本文算法 | 57 | 17.50 | 85 | 11.7 | 79 | 12.6 |
算法 | FLOPS | 参数量/MB | MIoU∕% |
---|---|---|---|
ENet[ | 8.1×109 | 12 | 58.3 |
SegNet[ | 6.4×1011 | 870 | 57.0 |
SQNet[ | 6.1×1010 | 76 | 59.8 |
ERFNet[ | 5.4×1010 | 67 | 68.0 |
本文算法 | 8.8×109 | 30 | 68.3 |
Tab. 2 Lightweight performance comparison of the proposed algorithm and baseline algorithms
算法 | FLOPS | 参数量/MB | MIoU∕% |
---|---|---|---|
ENet[ | 8.1×109 | 12 | 58.3 |
SegNet[ | 6.4×1011 | 870 | 57.0 |
SQNet[ | 6.1×1010 | 76 | 59.8 |
ERFNet[ | 5.4×1010 | 67 | 68.0 |
本文算法 | 8.8×109 | 30 | 68.3 |
算法 | 类别预测准确率 | MIoU | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
马路 | 人行道 | 建筑 | 墙壁 | 围栏 | 杆子 | 路灯 | 信号灯 | 植物 | 地面 | 天空 | 行人 | 骑手 | 汽车 | 卡车 | 巴士 | 火车 | 摩托车 | 单车 | ||
ENet[ | 96.3 | 74.2 | 75.0 | 32.2 | 33.2 | 43.4 | 34.1 | 44.0 | 88.6 | 61.4 | 90.6 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 58.3 |
SegNet[ | 96.4 | 73.2 | 84.0 | 28.4 | 29.0 | 35.7 | 39.8 | 45.1 | 87.0 | 63.8 | 91.8 | 62.8 | 42.8 | 89.3 | 38.1 | 43.1 | 44.1 | 35.8 | 51.9 | 56.1 |
SQNet[ | 96.9 | 75.4 | 87.9 | 31.6 | 35.7 | 50.9 | 52.0 | 61.7 | 90.9 | 65.8 | 93.0 | 73.8 | 42.6 | 91.5 | 18.8 | 41.2 | 33.3 | 34.0 | 59.9 | 59.8 |
ERFNet[ | 97.2 | 80.0 | 89.5 | 41.6 | 45.3 | 56.4 | 60.5 | 64.6 | 91.4 | 68.7 | 94.2 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 68.0 |
本文算法 | 94.0 | 80.8 | 88.7 | 60.8 | 60.7 | 67.0 | 58.2 | 66.5 | 91.8 | 67.3 | 93.0 | 44.0 | 51.3 | 82.2 | 55.3 | 61.5 | 52.0 | 51.7 | 70.8 | 68.3 |
Tab. 3 Comparison of the proposed algorithm and baseline algorithms on Cityscape dataset
算法 | 类别预测准确率 | MIoU | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
马路 | 人行道 | 建筑 | 墙壁 | 围栏 | 杆子 | 路灯 | 信号灯 | 植物 | 地面 | 天空 | 行人 | 骑手 | 汽车 | 卡车 | 巴士 | 火车 | 摩托车 | 单车 | ||
ENet[ | 96.3 | 74.2 | 75.0 | 32.2 | 33.2 | 43.4 | 34.1 | 44.0 | 88.6 | 61.4 | 90.6 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 58.3 |
SegNet[ | 96.4 | 73.2 | 84.0 | 28.4 | 29.0 | 35.7 | 39.8 | 45.1 | 87.0 | 63.8 | 91.8 | 62.8 | 42.8 | 89.3 | 38.1 | 43.1 | 44.1 | 35.8 | 51.9 | 56.1 |
SQNet[ | 96.9 | 75.4 | 87.9 | 31.6 | 35.7 | 50.9 | 52.0 | 61.7 | 90.9 | 65.8 | 93.0 | 73.8 | 42.6 | 91.5 | 18.8 | 41.2 | 33.3 | 34.0 | 59.9 | 59.8 |
ERFNet[ | 97.2 | 80.0 | 89.5 | 41.6 | 45.3 | 56.4 | 60.5 | 64.6 | 91.4 | 68.7 | 94.2 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 68.0 |
本文算法 | 94.0 | 80.8 | 88.7 | 60.8 | 60.7 | 67.0 | 58.2 | 66.5 | 91.8 | 67.3 | 93.0 | 44.0 | 51.3 | 82.2 | 55.3 | 61.5 | 52.0 | 51.7 | 70.8 | 68.3 |
模块 | 速度/FPS | MIoU/% |
---|---|---|
无SA模块 | 12.9 | 67.4 |
无膨胀率 | 13.3 | 67.1 |
总体模型 | 12.6 | 68.3 |
Tab. 4 Results of model ablation experiment
模块 | 速度/FPS | MIoU/% |
---|---|---|
无SA模块 | 12.9 | 67.4 |
无膨胀率 | 13.3 | 67.1 |
总体模型 | 12.6 | 68.3 |
1 | 董阳,潘海为,崔倩娜,等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 |
DONG Y, PAN H W, CUI Q N, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor[J]. Journal of Computer Applications, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 | |
2 | 佘玉龙,张晓龙,程若勤,等. 基于边缘关注模型的语义分割方法[J]. 计算机应用. 2021, 41(2): 343-349. 10.11772/j.issn.1001-9081.2020050725 |
SHE Y L, ZHANG X L, CHENG R Q, et al. Semantic segmentation method based on edge attention model[J]. Journal of Computer Applications, 2021, 41(2): 343-349. 10.11772/j.issn.1001-9081.2020050725 | |
3 | 高海军,曾祥银,潘大志,等. 基于U-Net改进模型的直肠肿瘤分割方法[J]. 计算机应用, 2020, 40(8): 2392-2397. 10.11772/j.issn.1001-9081.2020030318 |
GAO H Q, ZENG X Y, PAN D Z, et al. Rectal tumor segmentation method based on improved U-Net model[J]. Journal of Computer Applications, 2020, 40(8): 2392-2397. 10.11772/j.issn.1001-9081.2020030318 | |
4 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. 10.1109/tpami.2016.2644615 |
5 | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[EB/OL]. (2016-06-07) [2021-04-10].. |
6 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
7 | TREML M, ARJONA-MEDINA J, UNTERTHINER T, et al. Speeding up semantic segmentation for autonomous driving[EB/OL]. [2021-04-17].. |
8 | ROMERA E, ÁLVAREZ J M, BERGASA L M, et al. ERFNet efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1): 263-272. 10.1109/tits.2017.2750080 |
9 | YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 334-349. |
10 | ZHAO H S, QI X J, SHEN X Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 418-434. |
11 | WANG Y, ZHOU Q, LIU J, et al. LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 1860-1864. 10.1109/icip.2019.8803154 |
12 | GAMAL M, SIAM M, ABDEL-RAZEK M. ShuffleSeg: real-time semantic segmentation network[EB/OL]. (2018-03-15) [2021-04-11].. |
13 | LI G, KIM J. DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation[C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.259. 10.1109/access.2020.2971760 |
14 | ZHAO H S, SHI J Q, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
15 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 4(40): 834-848. |
16 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
17 | CHAURASIA A, CULURCIELLO E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]// Proceedings of the 2017 IEEE Visual Communications and Image Processing. Piscataway: IEEE, 2017: 1-4. 10.1109/vcip.2017.8305148 |
18 | CHEN P R, HANG H M, CHAN S W, et al. DSNet: an efficient CNN for road scene segmentation[C]// Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2019: 424-432. 10.1109/apsipaasc47483.2019.9023104 |
19 | PENG C, ZHANG X Y, YU G, et al. Large kernel matters — improve semantic segmentation by global convolutional network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1743-1751. 10.1109/cvpr.2017.189 |
20 | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. 10.1109/wacv.2018.00163 |
21 | POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network[C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.289. |
22 | ZHAO H Y, ZHANG Y, LIU S, et al. PSANet: point-wise spatial attention network for scene parsing[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11213. Cham: Springer, 2018: 270-286. |
23 | YU C Q, WANG J B, PENG C, et al. Learning a discriminative feature network for semantic segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1857-1866. 10.1109/cvpr.2018.00199 |
24 | HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 603-612. 10.1109/iccv.2019.00069 |
25 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 |
26 | CHEN L C, YANG Y, WANG J, et al. Attention to scale: scale-aware semantic image segmentation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3640-3649. 10.1109/cvpr.2016.396 |
27 | LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5168-5177. 10.1109/cvpr.2017.549 |
[1] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[2] | Pengfei ZHANG, Litao HAN, Hengjian FENG, Hongmei LI. Point cloud semantic segmentation based on attention mechanism and global feature optimization [J]. Journal of Computer Applications, 2024, 44(4): 1086-1092. |
[3] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[4] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[5] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[6] | Yongjiang LIU, Bin CHEN. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank [J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. |
[7] | Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features [J]. Journal of Computer Applications, 2024, 44(11): 3581-3586. |
[8] | Qiumei ZHENG, Weiwei NIU, Fenghua WANG, Dan ZHAO. Dual-branch real-time semantic segmentation network based on detail enhancement [J]. Journal of Computer Applications, 2024, 44(10): 3058-3066. |
[9] | Di ZHOU, Zili ZHANG, Jia CHEN, Xinrong HU, Ruhan HE, Jun ZHANG. Stomach cancer image segmentation method based on EfficientNetV2 and object-contextual representation [J]. Journal of Computer Applications, 2023, 43(9): 2955-2962. |
[10] | Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution [J]. Journal of Computer Applications, 2023, 43(9): 2692-2699. |
[11] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[12] | Bin LU, Jielin LIU. Semantic segmentation for 3D point clouds based on feature enhancement [J]. Journal of Computer Applications, 2023, 43(6): 1818-1825. |
[13] | Quan YUAN, Yunpeng XU, Chengliang TANG. Document-level relation extraction method based on path labels [J]. Journal of Computer Applications, 2023, 43(4): 1029-1035. |
[14] | Xuedong HE, Shibin XUAN, Kuan WANG, Mengnan CHEN. DeepLabV3+ image segmentation algorithm fusing cumulative distribution function and channel attention mechanism [J]. Journal of Computer Applications, 2023, 43(3): 936-942. |
[15] | Feiyu LIAN, Liang ZHANG, Jiedong WANG, Yukang JIN, Yu CHAI. Outdoor scene point cloud segmentation model based on graph model and attention mechanism [J]. Journal of Computer Applications, 2023, 43(12): 3911-3917. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||