Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1027-1034.DOI: 10.11772/j.issn.1001-9081.2023050649
Special Issue: 第九届全国智能信息处理学术会议(NCIIP 2023)
• The 9th National Conference on Intelligent Information Processing(NCIIP 2023) • Previous Articles Next Articles
Bin XIAO1, Yun GAN1, Min WANG2, Xingpeng ZHANG1(), Zhaoxing WANG3
Received:
2023-05-24
Revised:
2023-07-08
Accepted:
2023-07-14
Online:
2024-04-22
Published:
2024-04-10
Contact:
Xingpeng ZHANG
About author:
XIAO Bin, born in 1978, M. S., professor. His research interests include software engineering, enterprise informatization.Supported by:
通讯作者:
张兴鹏
作者简介:
肖斌(1978—),男,重庆人,教授,硕士,CCF会员,主要研究方向:软件工程、企业信息化基金资助:
CLC Number:
Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module[J]. Journal of Computer Applications, 2024, 44(4): 1027-1034.
肖斌, 甘昀, 汪敏, 张兴鹏, 王照星. 基于端口注意力与通道空间注意力的网络异常流量检测[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1027-1034.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050649
端口号 | 正常流量数 | 异常流量数 | 异常概率/% |
---|---|---|---|
53 | 957 812 | 0 | 0.00 |
443 | 505 087 | 240 | 0.05 |
80 | 235 536 | 382 288 | 61.88 |
123 | 23 879 | 0 | 0.00 |
22 | 10 781 | 6 140 | 36.29 |
137 | 7 913 | 0 | 0.00 |
21 | 5 332 | 8 178 | 60.53 |
445 | 1 932 | 179 | 8.48 |
8080 | 1 356 | 1 415 | 51.06 |
444 | 0 | 256 | 100.00 |
Tab. 1 Statistical table of port data
端口号 | 正常流量数 | 异常流量数 | 异常概率/% |
---|---|---|---|
53 | 957 812 | 0 | 0.00 |
443 | 505 087 | 240 | 0.05 |
80 | 235 536 | 382 288 | 61.88 |
123 | 23 879 | 0 | 0.00 |
22 | 10 781 | 6 140 | 36.29 |
137 | 7 913 | 0 | 0.00 |
21 | 5 332 | 8 178 | 60.53 |
445 | 1 932 | 179 | 8.48 |
8080 | 1 356 | 1 415 | 51.06 |
444 | 0 | 256 | 100.00 |
PAM | 全连接层 | ||||
---|---|---|---|---|---|
隐藏层1 | 隐藏层2 | 准确率/% | 隐藏层1 | 隐藏层2 | 准确率/% |
4 | 8 | 97.95 | 16 | 32 | 98.52 |
8 | 8 | 98.63 | 32 | 32 | 98.71 |
8 | 16 | 99.07 | 32 | 64 | 99.07 |
16 | 16 | 98.84 | 64 | 32 | 98.86 |
16 | 8 | 98.89 | 64 | 64 | 98.64 |
32 | 32 | 98.21 | 64 | 128 | 98.48 |
Tab. 2 Ablation experiment results of hidden layers
PAM | 全连接层 | ||||
---|---|---|---|---|---|
隐藏层1 | 隐藏层2 | 准确率/% | 隐藏层1 | 隐藏层2 | 准确率/% |
4 | 8 | 97.95 | 16 | 32 | 98.52 |
8 | 8 | 98.63 | 32 | 32 | 98.71 |
8 | 16 | 99.07 | 32 | 64 | 99.07 |
16 | 16 | 98.84 | 64 | 32 | 98.86 |
16 | 8 | 98.89 | 64 | 64 | 98.64 |
32 | 32 | 98.21 | 64 | 128 | 98.48 |
注意力模块 | 准确率/% | 参数量/106 |
---|---|---|
不使用注意力 | 97.04 | 0.184 |
GAM[ | 98.35 | 0.237 |
CA[ | 98.61 | 0.193 |
SE[ | 98.83 | 0.185 |
ECA[ | 99.02 | 0.185 |
CBAM | 99.18 | 0.186 |
Tab. 3 Experiment result comparison of different attention modules
注意力模块 | 准确率/% | 参数量/106 |
---|---|---|
不使用注意力 | 97.04 | 0.184 |
GAM[ | 98.35 | 0.237 |
CA[ | 98.61 | 0.193 |
SE[ | 98.83 | 0.185 |
ECA[ | 99.02 | 0.185 |
CBAM | 99.18 | 0.186 |
模型 | Acc/% | Pr/% | Re/% | F1/% | FPR | 参数量/106 |
---|---|---|---|---|---|---|
CNN | 97.04 | 99.56 | 96.76 | 98.14 | 1.77 | 0.184 |
1D-CNN+LSTM[ | 97.40 | 99.69 | 97.08 | 98.37 | 1.26 | 1.217 |
ResNet50 | 92.95 | 99.04 | 92.39 | 95.60 | 4.33 | 25.560 |
CBAM-ResNet50[ | 96.70 | 98.61 | 97.25 | 97.93 | 1.85 | 28.090 |
本文模型 | 99.18 | 99.79 | 99.18 | 99.48 | 0.84 | 0.186 |
Tab. 4 Results of binary-class classification by different models
模型 | Acc/% | Pr/% | Re/% | F1/% | FPR | 参数量/106 |
---|---|---|---|---|---|---|
CNN | 97.04 | 99.56 | 96.76 | 98.14 | 1.77 | 0.184 |
1D-CNN+LSTM[ | 97.40 | 99.69 | 97.08 | 98.37 | 1.26 | 1.217 |
ResNet50 | 92.95 | 99.04 | 92.39 | 95.60 | 4.33 | 25.560 |
CBAM-ResNet50[ | 96.70 | 98.61 | 97.25 | 97.93 | 1.85 | 28.090 |
本文模型 | 99.18 | 99.79 | 99.18 | 99.48 | 0.84 | 0.186 |
类别 | Acc | Pr | F1 |
---|---|---|---|
BENIGN | 99.87 | 99.27 | 99.57 |
Bot | 98.80 | 88.67 | 93.46 |
DDoS | 99.86 | 99.71 | 99.78 |
GoldenEye | 67.81 | 84.13 | 75.09 |
Hulk | 97.42 | 97.38 | 97.40 |
SlowHTTP | 84.56 | 95.86 | 89.86 |
SlowLoris | 75.61 | 98.79 | 85.66 |
FtpPatator | 99.01 | 97.41 | 98.20 |
Heartbleed | 100.00 | 92.85 | 96.29 |
Infiltration | 61.53 | 100.00 | 76.19 |
PortScan | 92.01 | 99.90 | 95.79 |
SSH-Patator | 97.99 | 96.89 | 97.44 |
WebAttack | 98.69 | 94.79 | 96.70 |
Tab. 5 Result of different categories in multi-class classification experiment
类别 | Acc | Pr | F1 |
---|---|---|---|
BENIGN | 99.87 | 99.27 | 99.57 |
Bot | 98.80 | 88.67 | 93.46 |
DDoS | 99.86 | 99.71 | 99.78 |
GoldenEye | 67.81 | 84.13 | 75.09 |
Hulk | 97.42 | 97.38 | 97.40 |
SlowHTTP | 84.56 | 95.86 | 89.86 |
SlowLoris | 75.61 | 98.79 | 85.66 |
FtpPatator | 99.01 | 97.41 | 98.20 |
Heartbleed | 100.00 | 92.85 | 96.29 |
Infiltration | 61.53 | 100.00 | 76.19 |
PortScan | 92.01 | 99.90 | 95.79 |
SSH-Patator | 97.99 | 96.89 | 97.44 |
WebAttack | 98.69 | 94.79 | 96.70 |
模型 | Acc |
---|---|
RF | 96.04 |
KNN | 95.60 |
Naive Bayes | 86.51 |
CNN | 96.73 |
ResNet50 | 87.19 |
LeNet[ | 78.21 |
CBAM-ResNet50 | 92.92 |
DeepGFL[ | 94.85 |
AFM-ICNN-1D[ | 98.16 |
1DCNN-BiLSTM[ | 98.65 |
Multi-Stage Approach[ | 98.77 |
本文模型 | 99.07 |
Tab. 6 Results of multi-class classification experiments by different models
模型 | Acc |
---|---|
RF | 96.04 |
KNN | 95.60 |
Naive Bayes | 86.51 |
CNN | 96.73 |
ResNet50 | 87.19 |
LeNet[ | 78.21 |
CBAM-ResNet50 | 92.92 |
DeepGFL[ | 94.85 |
AFM-ICNN-1D[ | 98.16 |
1DCNN-BiLSTM[ | 98.65 |
Multi-Stage Approach[ | 98.77 |
本文模型 | 99.07 |
Backbone | PAM | CBAM | 准确率 | |
---|---|---|---|---|
二分类 | 多分类 | |||
CNN | 97.04 | 96.73 | ||
√ | 98.69 | 98.14 | ||
√ | 98.67 | 98.52 | ||
√ | √ | 99.18 | 99.07 | |
ResNet18 | 95.31 | 93.50 | ||
√ | 96.23 | 94.98 | ||
√ | 97.01 | 95.42 | ||
√ | √ | 97.95 | 96.39 |
Tab. 7 Ablation experiment results
Backbone | PAM | CBAM | 准确率 | |
---|---|---|---|---|
二分类 | 多分类 | |||
CNN | 97.04 | 96.73 | ||
√ | 98.69 | 98.14 | ||
√ | 98.67 | 98.52 | ||
√ | √ | 99.18 | 99.07 | |
ResNet18 | 95.31 | 93.50 | ||
√ | 96.23 | 94.98 | ||
√ | 97.01 | 95.42 | ||
√ | √ | 97.95 | 96.39 |
1 | 中国互联网络信息中心. 第51 次中国互联网发展统计报告[R/OL]. [2023-06-03]. ’s internet development[R/OL]. [2023-06-03]. . |
2 | AHMED M, MAHMOOD A, HU J. A survey of network anomaly detection techniques[J]. Journal of Network and Computer Applications, 2016, 60: 19-31. 10.1016/j.jnca.2015.11.016 |
3 | BIERSACK E, CALLEGARI C, MATIJASEVIC M. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience[M]. Heidelberg: Springer, 2013: 21-29. 10.1007/978-3-642-36784-7 |
4 | DHOTE Y, AGRAWAL S, DEEN A J. A survey on feature selection techniques for internet traffic classification [C]// Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks. Piscataway: IEEE, 2015: 1375-1380. 10.1109/cicn.2015.267 |
5 | ZHANG H, LU G, QASSRAWI M T, et al. Feature selection for optimizing traffic classification[J]. Computer Communications, 2012, 35(12): 1457-1471. 10.1016/j.comcom.2012.04.012 |
6 | WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning [C]// Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717. 10.1109/icoin.2017.7899588 |
7 | 白雪. 基于DBN的网络流量分类的研究[D]. 呼和浩特:内蒙古大学,2015: 28-51. |
BAI X. Research on internet traffic classification using DBN[D]. Hohhot: Inner Mongolia University, 2015: 28-51. | |
8 | AGARAP A F M. A neural network architecture combining gated recurrent unit and support vector machine for intrusion detection in network traffic data [C]// Proceedings of the 2018 10th International Conference on Machine Learning and Computing. New York: ACM, 2018: 26-30. 10.1145/3195106.3195117 |
9 | ROOPAK M, TIAN G Y, CHAMBERS J. Deep learning models for cуber security in IoT networks [C]// Proceedings of the 2019 Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2019: 0452-0457. 10.1109/ccwc.2019.8666588 |
10 | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018:3-19. 10.1007/978-3-030-01234-2_1 |
11 | SHARAFALDIN I, LASHKARI A H, GHORBANI A. Toward generating a new intrusion detection dataset and intrusion traffic characterization [C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy. [S.l.]: SciTePress, 2018: 108-116. 10.5220/0006639801080116 |
12 | ANDERSON J P. Computer security threat monitoring and surveillance [EB/OL]. [2023-05-01]. . |
13 | BAMAKAN S M H, WANG H, SHI Y. Ramp loss k-support vector classification-regression: a robust and sparse multi-class approach to the intrusion detection problem[J]. Knowledge-Based Systems, 2017, 126: 113-126. 10.1016/j.knosys.2017.03.012 |
14 | JHA S, TAN K, Al MAXION R. Markov chains, classifiers, and intrusion detection [C]// Proceedings of the 14th IEEE Computer Security Foundations Workshop. Piscataway: IEEE, 2001: 206-219. 10.1109/csfw.2001.930131 |
15 | SHON T, MOON J. A hybrid machine learning approach to network anomaly detection[J]. Information Sciences, 2007, 177(18): 3799-3821. 10.1016/j.ins.2007.03.025 |
16 | PAN X, LUO Y, XU Y. K-nearest neighbor based structural twin support vector machine[J]. Knowledge-Based Systems, 2015, 88: 34-44. 10.1016/j.knosys.2015.08.009 |
17 | YIN C, ZHU Y, FEI J, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954-21961. 10.1109/access.2017.2762418 |
18 | RHODE M, BURNAP P, JONES K. Early-stage malware prediction using recurrent neural networks[J]. Computers & Security, 2018, 77: 578- 594. 10.1016/j.cose.2018.05.010 |
19 | DORIGUZZI-CORIN R, MILLAR S, SCOTT-HAYWARD S, et al. Lucid: a practical,lightweight deep learning solution for DDoS attack detection[J]. IEEE Transactions on Network and Service Management, 2020, 17(2): 876-889. 10.1109/tnsm.2020.2971776 |
20 | BONTEMPS L, CAO V L, McDERMOTT J, et al. Collective anomaly detection based on long short-term memory recurrent neural network [C]// Proceedings of the 2016 Internet Conference on Future Data and Security Engineering. Cham: Springer, 2016: 141-152. 10.1007/978-3-319-48057-2_9 |
21 | KHAN R U, ZHANG X, KUMAR R, et al. Evaluating the performance of ResNet model based on image recognition [C]// Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. New York: ACM, 2018: 86-90. 10.1145/3194452.3194461 |
22 | LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10) [2023-05-01]. . |
23 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 |
24 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [EB/OL]. (2019-05-16) [2023-05-01]. . 10.1109/cvpr.2018.00745 |
25 | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
26 | 王锁成, 陈世平. 一种基于残差网络改进的异常流量入侵检测模型[J]. 小型微型计算机系统, 2023, 44(12): 2757-2764. |
WANG S C, CHEN S P. Improved abnormal traffic intrusion detection model based on residual network[J]. Journal of Chinese Computer Systems, 2023, 44(12): 2757-2764. | |
27 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
28 | YAO Y, SU L, LU Z. DeepGFL: deep feature learning via graph for attack detection on flow-based network traffic [C]// Proceedings of the 2018 IEEE Military Communications Conference. Piscataway: IEEE, 2018: 579-584. 10.1109/milcom.2018.8599821 |
29 | 杭梦鑫, 陈伟, 张仁杰. 基于改进的一维卷积神经网络的异常流量检测[J]. 计算机应用, 2021, 41(2): 433-440. |
HANG M X, CHEN W, ZHANG R J. Abnormal flow detection based on improved one-dimensional convolutional neural network[J]. Journal of Computer Applications, 2021, 41(2): 433-440. | |
30 | 尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络双向长短期记忆网络模型的流量异常检测方法[J]. 电子与信息学报, 2023, 45(10): 3719-3728. |
YIN Z N, MA H L, HU T. A traffic anomaly detection method based on the joint model of attention mechanism and one-dimensional convolutional neural network-bidirectional long short term memory[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3719-3728. | |
31 | VERKERKEN M, D’HOOGE L, SUDYANA D, et al. A novel multi-stage approach for hierarchical intrusion detection[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 3915-3929. 10.1109/tnsm.2023.3259474 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[15] | Xiaolu WANG, Wangfei QIAN. Gait recognition method based on two-branch convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1965-1971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||