Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2692-2699.DOI: 10.11772/j.issn.1001-9081.2022091405
• 2022 10th CCF Conference on Big Data • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Hong WANG, Qing QIAN( ), Huan WANG, Yong LONG
), Huan WANG, Yong LONG
												  
						
						
						
					
				
Received:2022-09-19
															
							
																	Revised:2022-10-18
															
							
																	Accepted:2022-10-21
															
							
							
																	Online:2023-09-10
															
							
																	Published:2023-09-10
															
							
						Contact:
								Qing QIAN   
													About author:WANG Hong, born in 1995, M. S. candidate. His research interests include artificial intelligence, passive image forensics.Supported by:通讯作者:
					钱清
							作者简介:王宏(1995—),男,四川南充人,硕士研究生,CCF会员,主要研究方向:人工智能、图像被动取证基金资助:CLC Number:
Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution[J]. Journal of Computer Applications, 2023, 43(9): 2692-2699.
王宏, 钱清, 王欢, 龙永. 融合大核注意力卷积的轻量化图像篡改定位算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2692-2699.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091405
| 模块序号 | 模块名称 | 步距 | 输出通道 | 重复层数 | 
|---|---|---|---|---|
| 0 | Conv3×3 | 2 | 24 | 1 | 
| 1 | Fused-MBConv1,K=3×3 | 1 | 24 | 2 | 
| 2 | Fused-MBConv4,K=3×3 | 2 | 48 | 4 | 
| 3 | Fused-MBConv4,K=3×3 | 2 | 64 | 4 | 
| 4 | MBConv4,K3×3,SE=0.25 | 2 | 128 | 6 | 
| 5 | MBConv6,K3×3,SE=0.25 | 1 | 160 | 9 | 
| 6 | MBConv6,K3×3,SE=0.25 | 2 | 256 | 15 | 
Tab. 1 Network structure of original EfficientNetV2 algorithm
| 模块序号 | 模块名称 | 步距 | 输出通道 | 重复层数 | 
|---|---|---|---|---|
| 0 | Conv3×3 | 2 | 24 | 1 | 
| 1 | Fused-MBConv1,K=3×3 | 1 | 24 | 2 | 
| 2 | Fused-MBConv4,K=3×3 | 2 | 48 | 4 | 
| 3 | Fused-MBConv4,K=3×3 | 2 | 64 | 4 | 
| 4 | MBConv4,K3×3,SE=0.25 | 2 | 128 | 6 | 
| 5 | MBConv6,K3×3,SE=0.25 | 1 | 160 | 9 | 
| 6 | MBConv6,K3×3,SE=0.25 | 2 | 256 | 15 | 
| 模块序号 | 模块名称 | 步距 | 输出通道 | 重复层数 | 
|---|---|---|---|---|
| 0 | LKA | 2 | 12 | 1 | 
| 1 | Fused-MBConv1,K=3×3 | 1 | 24 | 2 | 
| 2 | Fused-MBConv4,K=3×3 | 2 | 36 | 4 | 
| 3 | Fused-MBConv4,K=3×3 | 2 | 48 | 4 | 
| 4 | MBConv4,K,SE=0.25 | 2 | 92 | 6 | 
| 5 | MBConv6,K,SE=0.25 | 1 | 128 | 3 | 
| 6 | MBConv6,K,SE=0.25 | 2 | 192 | 5 | 
Tab. 2 Network structure of LKA-EfficientNet algorithm
| 模块序号 | 模块名称 | 步距 | 输出通道 | 重复层数 | 
|---|---|---|---|---|
| 0 | LKA | 2 | 12 | 1 | 
| 1 | Fused-MBConv1,K=3×3 | 1 | 24 | 2 | 
| 2 | Fused-MBConv4,K=3×3 | 2 | 36 | 4 | 
| 3 | Fused-MBConv4,K=3×3 | 2 | 48 | 4 | 
| 4 | MBConv4,K,SE=0.25 | 2 | 92 | 6 | 
| 5 | MBConv6,K,SE=0.25 | 1 | 128 | 3 | 
| 6 | MBConv6,K,SE=0.25 | 2 | 192 | 5 | 
| 层数 | 不同基干网络的精度/% | |
|---|---|---|
| EfficinetNetV2 | EfficientNetV2+LKA | |
| 16 | 79.7 | 80.0 | 
| 18 | 82.0 | 82.2 | 
| 20 | 84.8 | 84.2 | 
| 22 | 85.3 | 84.9 | 
| 24 | 82.6 | 85.7 | 
| 26 | 82.7 | 88.3 | 
| 28 | 80.5 | 88.0 | 
| 30 | 81.1 | 87.8 | 
| 32 | 80.0 | 88.0 | 
| 34 | 80.5 | 88.4 | 
| 36 | 80.2 | 88.3 | 
Tab. 3 Ablation experimental results of backbone networks with different layers
| 层数 | 不同基干网络的精度/% | |
|---|---|---|
| EfficinetNetV2 | EfficientNetV2+LKA | |
| 16 | 79.7 | 80.0 | 
| 18 | 82.0 | 82.2 | 
| 20 | 84.8 | 84.2 | 
| 22 | 85.3 | 84.9 | 
| 24 | 82.6 | 85.7 | 
| 26 | 82.7 | 88.3 | 
| 28 | 80.5 | 88.0 | 
| 30 | 81.1 | 87.8 | 
| 32 | 80.0 | 88.0 | 
| 34 | 80.5 | 88.4 | 
| 36 | 80.2 | 88.3 | 
| 网络 | 不同层数的精度/% | |||
|---|---|---|---|---|
| 16层 | 20层 | 24层 | 28层 | |
| ResNet | 81.2 | 82.7 | 84.3 | 83.9 | 
| ResNet+LKA | 82.0 | 84.2 | 85.5 | 86.7 | 
| ShuffleNet | 79.6 | 81.1 | 81.0 | 79.6 | 
| Shufflenet+LKA | 79.8 | 83.2 | 84.7 | 84.8 | 
| RegNet | 75.7 | 82.8 | 83.1 | 82.2 | 
| RegNet+LKA | 76.0 | 82.5 | 83.5 | 84.5 | 
Tab. 4 Comparison of accuracy of different networks under different layers
| 网络 | 不同层数的精度/% | |||
|---|---|---|---|---|
| 16层 | 20层 | 24层 | 28层 | |
| ResNet | 81.2 | 82.7 | 84.3 | 83.9 | 
| ResNet+LKA | 82.0 | 84.2 | 85.5 | 86.7 | 
| ShuffleNet | 79.6 | 81.1 | 81.0 | 79.6 | 
| Shufflenet+LKA | 79.8 | 83.2 | 84.7 | 84.8 | 
| RegNet | 75.7 | 82.8 | 83.1 | 82.2 | 
| RegNet+LKA | 76.0 | 82.5 | 83.5 | 84.5 | 
| 层间重复次数 | 精度/% | 层间重复次数 | 精度/% | 
|---|---|---|---|
| 1,2,3,4,5,9 | 88.3 | 1,2,2,3,5,11 | 87.2 | 
| 2,4,4,6,3,5 | 90.1 | 1,2,2,4,5,10 | 87.5 | 
| 1,3,4,5,4,7 | 89.3 | 2,3,4,5,4,6 | 89.7 | 
Tab. 5 Comparison of accuracy of different repetitions between layers under same number of layers
| 层间重复次数 | 精度/% | 层间重复次数 | 精度/% | 
|---|---|---|---|
| 1,2,3,4,5,9 | 88.3 | 1,2,2,3,5,11 | 87.2 | 
| 2,4,4,6,3,5 | 90.1 | 1,2,2,4,5,10 | 87.5 | 
| 1,3,4,5,4,7 | 89.3 | 2,3,4,5,4,6 | 89.7 | 
| 通道数变化率/% | 精度/% | 通道数变化率/% | 精度/% | 
|---|---|---|---|
| -30 | 88.7 | 0 | 90.1 | 
| -25 | 90.2 | +10 | 87.8 | 
| -10 | 89.8 | +25 | 88.0 | 
Tab. 6 Accuracy comparison of different channel numbers in backbone network
| 通道数变化率/% | 精度/% | 通道数变化率/% | 精度/% | 
|---|---|---|---|
| -30 | 88.7 | 0 | 90.1 | 
| -25 | 90.2 | +10 | 87.8 | 
| -10 | 89.8 | +25 | 88.0 | 
| 算法 | 浮点运算量/GFLOPs | 参数量/106 | P | R | F1 | 
|---|---|---|---|---|---|
| 文献[ | 14.02 | 33.41 | 0.846 | 0.792 | 0.818 | 
| 文献[ | 12.83 | 33.88 | 0.869 | 0.882 | 0.872 | 
| 文献[ | 1.32 | 2.80 | 0.855 | 0.868 | 0.861 | 
| 文献[ | 5.10 | 20.80 | 0.866 | 0.901 | 0.882 | 
| 文献[ | 2.10 | 7.70 | 0.870 | 0.884 | 0.876 | 
| 本文算法 | 0.93 | 4.10 | 0.915 | 0.893 | 0.903 | 
Tab. 7 Performance comparison results of different algorithms
| 算法 | 浮点运算量/GFLOPs | 参数量/106 | P | R | F1 | 
|---|---|---|---|---|---|
| 文献[ | 14.02 | 33.41 | 0.846 | 0.792 | 0.818 | 
| 文献[ | 12.83 | 33.88 | 0.869 | 0.882 | 0.872 | 
| 文献[ | 1.32 | 2.80 | 0.855 | 0.868 | 0.861 | 
| 文献[ | 5.10 | 20.80 | 0.866 | 0.901 | 0.882 | 
| 文献[ | 2.10 | 7.70 | 0.870 | 0.884 | 0.876 | 
| 本文算法 | 0.93 | 4.10 | 0.915 | 0.893 | 0.903 | 
| 算法 | Dataset | MICC-F2000 | COVERAGE | MICC-F600 | 
|---|---|---|---|---|
| 文献[ | 0.482 | 0.642 | 0.574 | 0.703 | 
| 文献[ | 0.531 | 0.742 | 0.626 | 0.791 | 
| 文献[ | 0.582 | 0.751 | 0.631 | 0.795 | 
| 文献[ | 0.580 | 0.754 | 0.615 | 0.788 | 
| 文献[ | 0.551 | 0.709 | 0.602 | 0.724 | 
| 本文算法 | 0.614 | 0.771 | 0.647 | 0.824 | 
Tab. 8 Comparison of F1 results of different algorithms on four datasets
| 算法 | Dataset | MICC-F2000 | COVERAGE | MICC-F600 | 
|---|---|---|---|---|
| 文献[ | 0.482 | 0.642 | 0.574 | 0.703 | 
| 文献[ | 0.531 | 0.742 | 0.626 | 0.791 | 
| 文献[ | 0.582 | 0.751 | 0.631 | 0.795 | 
| 文献[ | 0.580 | 0.754 | 0.615 | 0.788 | 
| 文献[ | 0.551 | 0.709 | 0.602 | 0.724 | 
| 本文算法 | 0.614 | 0.771 | 0.647 | 0.824 | 
| 1 | 田秀霞,李华强,张琴,等. 基于双通道R-FCN的图像篡改检测模型[J]. 计算机学报, 2021, 44(2):370-383. 10.11897/SP.J.1016.2021.00370 | 
| TIAN X X, LI H Q, ZHANG Q, et al. Dual-channel R-FCN model for image forgery detection[J]. Chinese Journal of Computers, 2021, 44(2):370-383. 10.11897/SP.J.1016.2021.00370 | |
| 2 | GUO M H, LU C Z, LIU Z N, et al. Visual attention network[EB/OL]. (2022-07-11) [2022-07-01].. | 
| 3 | ALOM M Z, TAHA T M, YAKOPCIC C, et al. A state-of-the-art survey on deep learning theory and architectures[J]. Electronics, 2019, 8(3): No.292. 10.3390/electronics8030292 | 
| 4 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-07-01].. | 
| 5 | MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2022-03-04) [2022-07-01].. 10.1109/cvpr.2019.00941 | 
| 6 | TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10096-10106. | 
| 7 | FRIDRICH J, SOUKAL D, LUKÁŠ J. Detection of copy-move forgery in digital images[EB/OL]. [2022-06-11].. | 
| 8 | COZZOLINO D, POGGI G, VERDOLIVA L. Efficient dense-field copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284-2297. 10.1109/tifs.2015.2455334 | 
| 9 | POPESCU A C, FARID H. Exposing digital forgeries by detecting duplicated image regions: TR2004-515[R/OL]. (2004-08-01) [2022-04-11].. 10.1109/tsp.2004.839932 | 
| 10 | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 2564-2571. 10.1109/iccv.2011.6126544 | 
| 11 | TAREEN S A K, SALEEM Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK[C]// Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies. Piscataway: IEEE, 2018: 1-10. 10.1109/icomet.2018.8346440 | 
| 12 | RAO Y, NI J Q. A deep learning approach to detection of splicing and copy-move forgeries in images[C]// Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2016: 1-6. 10.1109/wifs.2016.7823911 | 
| 13 | WU Y, ABD-ALMAGEED W, NATARAJAN P. BusterNet: detecting copy-move image forgery with source/target localization[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11210. Cham: Springer, 2018: 170-186. | 
| 14 | CHEN B J, TAN W J, COATRIEUX G, et al. A serial image copy-move forgery localization scheme with source/target distinguishment[J]. IEEE Transactions on Multimedia, 2021, 23: 3506-3517. 10.1109/tmm.2020.3026868 | 
| 15 | ZHOU P, HAN X T, MORARIU V I, et al. Learning rich features for image manipulation detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1053-1061. 10.1109/cvpr.2018.00116 | 
| 16 | WU Y, AbdALMAGEED W, NATARAJAN P. ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9535-9544. 10.1109/cvpr.2019.00977 | 
| 17 | 徐代,岳璋,杨文霞,等. 基于改进的三向流Faster R-CNN的篡改图像识别[J]. 计算机应用, 2020, 40(5):1315-1321. 10.11772/j.issn.1001-9081.2019081515 | 
| XU D, YUE Z, YANG W X, et al. Tampered image recognition based on improved three-stream Faster R-CNN[J]. Journal of Computer Applications, 2020, 40(5):1315-1321. 10.11772/j.issn.1001-9081.2019081515 | |
| 18 | ZHONG J L, PUN C M. An end-to-end Dense-InceptionNet for image copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2134-2146. 10.1109/tifs.2019.2957693 | 
| 19 | 吴旭,刘翔,赵静文. 一种轻量级多尺度融合的图像篡改检测算法[J].计算机工程, 2022, 48(2):224-229, 236. 10.19678/j.issn.1000-3428.0060066 | 
| WU X, LIU X, ZHAO J W. A lightweight multiscale fusion algorithm for image tampering detection[J]. Computer Engineering, 2022, 48(2):224-229, 236. 10.19678/j.issn.1000-3428.0060066 | |
| 20 | BARNI M, PHAN Q T, TONDI B. Copy move source-target disambiguation through multi-branch CNNs[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1825-1840. 10.1109/tifs.2020.3045903 | 
| 21 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 | 
| 22 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 | 
| 23 | BEIS J S, LOWE D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]// Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1997: 1000-1006. | 
| 24 | DONG J, WANG W, TAN T N. CASIA image tampering detection evaluation database[C]// Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 422-426. 10.1109/chinasip.2013.6625374 | 
| 25 | TRALIC D, ZUPANCIC I, GRGIC S, et al. CoMoFoD — new database for copy-move forgery detection[C]// Proceedings of the 2013 International Symposium on Electronics in Marine. Piscataway: IEEE, 2013: 49-54. | 
| 26 | ARDIZZONE E, BRUNO A, MAZZOLA G. Copy-move forgery detection by matching triangles of keypoints[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(10): 2084-2094. 10.1109/tifs.2015.2445742 | 
| 27 | AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy-move attack detection and transformation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099-1110. 10.1109/tifs.2011.2129512 | 
| 28 | WEN B H, ZHU Y, SUBRAMANIAN R, et al. COVERAGE — a novel database for copy-move forgery detection[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 161-165. 10.1109/icip.2016.7532339 | 
| 29 | AMERINI I, BALLAN L, CALDELLI R, et al. Copy-move forgery detection and localization by means of robust clustering with J-Linkage[J]. Signal Processing: Image Communication, 2013, 28(6): 659-669. 10.1016/j.image.2013.03.006 | 
| 30 | GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]// Proceedings of the 2005 European Conference on Information Retrieval, LNCS 3408. Berlin: Springer, 2005: 345-359. | 
| 31 | MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient inference[EB/OL]. (2017-06-08) [2022-07-01].. | 
| 32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
| 33 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. 10.1109/cvpr.2018.00716 | 
| 34 | RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10425-10433. 10.1109/cvpr42600.2020.01044 | 
| 35 | MARRA F, GRAGNANIELLO D, VERDOLIVA L, et al. A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection[J]. IEEE Access, 2020, 8: 133488-133502. 10.1109/access.2020.3009877 | 
| [1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| [14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. | 
| [15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||