Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3251-3259.DOI: 10.11772/j.issn.1001-9081.2022091422
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2022-09-26
Revised:
2023-01-06
Accepted:
2023-01-11
Online:
2023-03-03
Published:
2023-10-10
Contact:
Siyan FANG
About author:
LIU Bin, born in 1963, Ph. D., professor. His research interests include image processing, deep learning, wavelet analysis and application.
Supported by:
通讯作者:
方思严
作者简介:
刘斌(1963—),男,湖北红安人,教授,博士,主要研究方向:图像处理、深度学习、小波分析与应用;
基金资助:
CLC Number:
Bin LIU, Siyan FANG. Dual U-Former image deraining network based on non-separable lifting wavelet[J]. Journal of Computer Applications, 2023, 43(10): 3251-3259.
刘斌, 方思严. 基于不可分提升小波的双U-Former图像去雨网络[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3251-3259.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091422
方法 | Rain200H | Rain200L | Rain1200 | Rain12 | 参数量/106 | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
RESCAN | 26.577 | 0.839 7 | 36.965 | 0.978 5 | 32.131 | 0.903 7 | 32.172 | 0.948 5 | 0.15 |
PReNet | 27.956 | 0.892 0 | 36.563 | 0.980 4 | 32.096 | 0.915 1 | 35.424 | 0.966 5 | 0.17 |
SPANet | 25.009 | 0.848 0 | 34.118 | 0.970 7 | 27.099 | 0.808 2 | 32.400 | 0.948 9 | 0.28 |
BRN | 28.843 | 0.906 8 | 37.454 | 0.983 0 | 31.998 | 0.914 9 | 35.194 | 0.966 2 | 0.41 |
DCSFN | 28.587 | 0.903 7 | 36.952 | 0.980 3 | 32.275 | 35.607 | 0.968 0 | 6.45 | |
RCDNet | 29.268 | 0.899 6 | 38.519 | 0.984 7 | 32.516 | 0.915 9 | 35.573 | 0.966 1 | 2.98 |
EfDeRain | 24.539 | 0.834 4 | 30.498 | 0.945 5 | 31.098 | 0.887 5 | 33.372 | 0.953 9 | 27.40 |
SPDNet | 32.810 | 0.916 2 | 0.967 4 | 3.32 | |||||
SSID-KD | 28.707 | 0.900 5 | 37.041 | 0.980 6 | 32.424 | 0.920 2 | 35.473 | 4.43 | |
DUFN | 30.810 | 0.932 7 | 39.715 | 0.988 5 | 0.924 8 | 37.280 | 0.972 6 | 5.44 |
Tab. 1 Quantitative comparison results of different methods on synthetic datasets
方法 | Rain200H | Rain200L | Rain1200 | Rain12 | 参数量/106 | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
RESCAN | 26.577 | 0.839 7 | 36.965 | 0.978 5 | 32.131 | 0.903 7 | 32.172 | 0.948 5 | 0.15 |
PReNet | 27.956 | 0.892 0 | 36.563 | 0.980 4 | 32.096 | 0.915 1 | 35.424 | 0.966 5 | 0.17 |
SPANet | 25.009 | 0.848 0 | 34.118 | 0.970 7 | 27.099 | 0.808 2 | 32.400 | 0.948 9 | 0.28 |
BRN | 28.843 | 0.906 8 | 37.454 | 0.983 0 | 31.998 | 0.914 9 | 35.194 | 0.966 2 | 0.41 |
DCSFN | 28.587 | 0.903 7 | 36.952 | 0.980 3 | 32.275 | 35.607 | 0.968 0 | 6.45 | |
RCDNet | 29.268 | 0.899 6 | 38.519 | 0.984 7 | 32.516 | 0.915 9 | 35.573 | 0.966 1 | 2.98 |
EfDeRain | 24.539 | 0.834 4 | 30.498 | 0.945 5 | 31.098 | 0.887 5 | 33.372 | 0.953 9 | 27.40 |
SPDNet | 32.810 | 0.916 2 | 0.967 4 | 3.32 | |||||
SSID-KD | 28.707 | 0.900 5 | 37.041 | 0.980 6 | 32.424 | 0.920 2 | 35.473 | 4.43 | |
DUFN | 30.810 | 0.932 7 | 39.715 | 0.988 5 | 0.924 8 | 37.280 | 0.972 6 | 5.44 |
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
RESCAN | 36.445 | 0.966 4 | SPDNet | 41.328 | 0.982 9 |
SPANet | 38.505 | 0.978 6 | ECNetLL | ||
RCDNet | 39.683 | 0.979 7 | DUFN | 42.829 | 0.990 0 |
EfDeRain | 40.663 | 0.981 0 |
Tab. 2 Quantitative comparison of different methods on real rain dataset SPA-Data
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
RESCAN | 36.445 | 0.966 4 | SPDNet | 41.328 | 0.982 9 |
SPANet | 38.505 | 0.978 6 | ECNetLL | ||
RCDNet | 39.683 | 0.979 7 | DUFN | 42.829 | 0.990 0 |
EfDeRain | 40.663 | 0.981 0 |
实验 序号 | 采样方式 | Rain200H | |||
---|---|---|---|---|---|
NLWT+INLWT | DWT+IDWT | 最大池化+双线性插值 | PSNR/dB | SSIM | |
1 | √ | 30.810 | 0.932 7 | ||
2 | √ | 30.664 | 0.931 5 | ||
3 | √ | 29.520 | 0.925 6 |
Tab. 3 Ablation experimental results of multi-scale strategies
实验 序号 | 采样方式 | Rain200H | |||
---|---|---|---|---|---|
NLWT+INLWT | DWT+IDWT | 最大池化+双线性插值 | PSNR/dB | SSIM | |
1 | √ | 30.810 | 0.932 7 | ||
2 | √ | 30.664 | 0.931 5 | ||
3 | √ | 29.520 | 0.925 6 |
实验 序号 | 融合策略 | 尺度 引导 | 多尺度 串联 | Rain200H | ||
---|---|---|---|---|---|---|
1×1卷积 | 门控融合 | PSNR/dB | SSIM | |||
4 | √ | √ | √ | 30.810 | 0.932 7 | |
5 | √ | √ | 30.369 | 0.930 5 | ||
6 | √ | √ | 29.725 | 0.922 2 | ||
7 | √ | √ | √ | 30.001 | 0.930 6 |
Tab. 4 Ablation experimental results of different modules
实验 序号 | 融合策略 | 尺度 引导 | 多尺度 串联 | Rain200H | ||
---|---|---|---|---|---|---|
1×1卷积 | 门控融合 | PSNR/dB | SSIM | |||
4 | √ | √ | √ | 30.810 | 0.932 7 | |
5 | √ | √ | 30.369 | 0.930 5 | ||
6 | √ | √ | 29.725 | 0.922 2 | ||
7 | √ | √ | √ | 30.001 | 0.930 6 |
方法 | mAP50 | 方法 | mAP50 |
---|---|---|---|
Rainy | 43.49 | RCDNet | 58.49 |
RESCAN | 54.48 | EfDeRain | 56.17 |
PReNet | 49.90 | SPDNet | |
SPANet | 56.06 | SSID-KD | 57.63 |
BRN | 49.52 | DUFN | 61.13 |
DCSFN | 54.40 |
Tab. 5 Comparison results of joint image deraining and object detection of different methods on COCO350 dataset
方法 | mAP50 | 方法 | mAP50 |
---|---|---|---|
Rainy | 43.49 | RCDNet | 58.49 |
RESCAN | 54.48 | EfDeRain | 56.17 |
PReNet | 49.90 | SPDNet | |
SPANet | 56.06 | SSID-KD | 57.63 |
BRN | 49.52 | DUFN | 61.13 |
DCSFN | 54.40 |
1 | LIU J, YANG W, YANG S, et al. Erase or fill? deep joint recurrent rain removal and reconstruction in videos[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3233-3242. 10.1109/cvpr.2018.00341 |
2 | YANG W, LIU J, FENG J. Frame-consistent recurrent video deraining with dual-level flow[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1661-1670. 10.1109/cvpr.2019.00176 |
3 | KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1742-1755. 10.1109/tip.2011.2179057 |
4 | LI Y, TAN R T, GUO X, et al. Rain streak removal using layer priors[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2736-2744. 10.1109/cvpr.2016.299 |
5 | CHEN Y L, HSU C T. A generalized low-rank appearance model for spatio-temporally correlated rain streaks[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 1968-1975. 10.1109/iccv.2013.247 |
6 | FU X, HUANG J, DING X, et al. Clearing the skies: a deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956. 10.1109/tip.2017.2691802 |
7 | FU X, HUANG J, ZENG D, et al. Removing rain from single images via a deep detail network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1715-1723. 10.1109/cvpr.2017.186 |
8 | LI Y, MONNO Y, OKUTOMI M. Single image deraining network with rain embedding consistency and layered LSTM[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 3957-3966. 10.1109/wacv51458.2022.00401 |
9 | CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12294-12305. 10.1109/cvpr46437.2021.01212 |
10 | LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 262-277. |
11 | JIANG K, WANG Z, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8343-8352. 10.1109/cvpr42600.2020.00837 |
12 | WANG C, XING X, WU Y, et al. DCSFN: deep cross-scale fusion network for single image rain removal[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1643-1651. 10.1145/3394171.3413820 |
13 | WANG C, ZHU H, FAN W, et al. Single image rain removal using recurrent scale-guide networks[J]. Neurocomputing, 2022, 467: 242-255. 10.1016/j.neucom.2021.10.029 |
14 | YI Q, LI J, DAI Q, et al. Structure-preserving deraining with residue channel prior guidance[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4218-4227. 10.1109/iccv48922.2021.00420 |
15 | LIU B, LIU W. The lifting factorization of 2D 4-channel nonseparable wavelet transforms[J]. Information Sciences, 2018, 456: 113-130. 10.1016/j.ins.2018.05.012 |
16 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
17 | PARK Y, JEON M, LEE J, et al. MCW-Net: single image deraining with multi-level connections and wide regional non-local blocks[J]. Signal Processing: Image Communication, 2022, 105: No.116701. 10.1016/j.image.2022.116701 |
18 | LIN H, JING C, HUANG Y, et al. A2Net: adjacent aggregation networks for image raindrop removal[J]. IEEE Access, 2020, 8: 60769-60779. 10.1109/access.2020.2983087 |
19 | JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]// Proceedings of the IEEE 33rd International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2020: 558-564. 10.1109/cbms49503.2020.00111 |
20 | WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped Transformer for image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17662-17672. 10.1109/cvpr52688.2022.01716 |
21 | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. 10.1109/cvpr52688.2022.00564 |
22 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
23 | 刘斌,彭嘉雄. 基于四通道不可分加性小波的多光谱图像融合[J]. 计算机学报, 2009, 32(2): 350-356. 10.3724/sp.j.1016.2009.00350 |
LIU B, PENG J X. Fusion method of multi-spectral image and panchromatic image based on four channels non-sperable additive wavelets[J]. Chinese Journal of Computers, 2009, 32(2): 350-356. 10.3724/sp.j.1016.2009.00350 | |
24 | QIN X, WANG Z, BAI Y, et al. FFA-Net: feature fusion attention network for single image dehazing[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 11908-11915. 10.1609/aaai.v34i07.6865 |
25 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
26 | YANG W, TAN R T, FENG J, et al. Deep joint rain detection and removal from a single image[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1685-1694. 10.1109/cvpr.2017.183 |
27 | ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 695-704. 10.1109/cvpr.2018.00079 |
28 | WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12262-12271. 10.1109/cvpr.2019.01255 |
29 | WEI W, MENG D, ZHAO Q, et al. Semi-supervised transfer learning for image rain removal[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3872-3881. 10.1109/cvpr.2019.00400 |
30 | HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. 10.1049/el:20080522 |
31 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-05-15].. |
32 | REN D, ZUO W, HU Q, et al. Progressive image deraining networks: a better and simpler baseline[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3932-3941. 10.1109/cvpr.2019.00406 |
33 | REN D, SHANG W, ZHU P, et al. Single image deraining using bilateral recurrent network[J]. IEEE Transactions on Image Processing, 2020, 29: 6852-6863. 10.1109/tip.2020.2994443 |
34 | WANG H, XIE Q, ZHAO Q, et al. A model-driven deep neural network for single image rain removal[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3100-3109. 10.1109/cvpr42600.2020.00317 |
35 | GUO Q, SUN J, JUEFEI-XU F, et al. EfficientDeRain: learning pixel-wise dilation filtering for high-efficiency single-image deraining[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 1487-1495. 10.1609/aaai.v35i2.16239 |
36 | CUI X, WANG C, REN D, et al. Semi-supervised image deraining using knowledge distillation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8327-8341. 10.1109/tcsvt.2022.3190516 |
37 | Ultralytics. YOLOv5[EB/OL]. [2022-04-25].. 10.1117/1.jei.31.3.033033 |
[1] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. |
[2] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[3] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[4] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[6] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[7] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[8] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[9] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[10] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[11] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[12] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
[13] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[14] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[15] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||