| 1 | 
																						 
											KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105.
																						 | 
										
																													
																							| 2 | 
																						 
											HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNTCS 6791. Berlin: Springer, 2011: 44-51.
																						 | 
										
																													
																							| 3 | 
																						 
											SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 3859-3869.
																						 | 
										
																													
																							| 4 | 
																						 
											HINTON G, SABOUR S, FROSST N. Matrix capsules with EM routing[EB/OL]. (2023-01-24) [2023-01-30]..
																						 | 
										
																													
																							| 5 | 
																						 
											KOSIOREK A R, SABOUR S, TEH Y W, et al. Stacked capsule autoencoders[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing System [2022-02-10]..
																						 | 
										
																													
																							| 6 | 
																						 
											XIANG H L, HUANG Y S, LEE C H, et al. 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis[J]. European Journal of Radiology, 2021, 138: No.109608.  10.1016/j.ejrad.2021.109608 
																						 | 
										
																													
																							| 7 | 
																						 
											AFSHAR P, NADERKHANI F, OIKONOMOU A, et al. MIXCAPS: a capsule network-based mixture of experts for lung nodule malignancy prediction[J]. Pattern Recognition, 2021, 116: No.107942.  10.1016/j.patcog.2021.107942 
																						 | 
										
																													
																							| 8 | 
																						 
											PANIGRAHI S, DAS J, SWARNKAR T. Capsule network based analysis of histopathological images of oral squamous cell carcinoma[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(7): 4546-4553.  10.1016/j.jksuci.2020.11.003 
																						 | 
										
																													
																							| 9 | 
																						 
											SUN G C, DING S F, SUN T F, et al. SA-CapsGAN: using Capsule Networks with embedded self-attention for Generative Adversarial Network[J]. Neurocomputing, 2021, 423: 399-406.  10.1016/j.neucom.2020.10.092 
																						 | 
										
																													
																							| 10 | 
																						 
											JAISWAL A, AbdALMAGEED W, WU Y, et al. CapsuleGAN: generative adversarial capsule network[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11131. Cham: Springer, 2019: 526-535.
																						 | 
										
																													
																							| 11 | 
																						 
											JACOB I J. Performance evaluation of Caps-Net based multitask learning architecture for text classification[J]. Journal of Artificial Intelligence and Capsule Networks, 2020, 2(1): 1-10.  10.36548/jaicn.2020.1.001 
																						 | 
										
																													
																							| 12 | 
																						 
											WU Y J, LI J, WU J, et al. Siamese capsule networks with global and local features for text classification[J]. Neurocomputing, 2020, 390: 88-98.  10.1016/j.neucom.2020.01.064 
																						 | 
										
																													
																							| 13 | 
																						 
											LALONDE R, XU Z Y, IRMAKCI I, et al. Capsules for biomedical image segmentation[J]. Medical Image Analysis, 2021, 68: No.101889.  10.1016/j.media.2020.101889 
																						 | 
										
																													
																							| 14 | 
																						 
											DUARTE K, RAWAT Y S, SHAH M. VideoCapsuleNet: a simplified network for action detection[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7621-7630.
																						 | 
										
																													
																							| 15 | 
																						 
											HUA Q, WEI L L, DONG C R, et al. Improved variational inference with dynamic routing flow[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(2): 301-312.  10.1007/s13042-019-00974-x 
																						 | 
										
																													
																							| 16 | 
																						 
											WANG Y H, XIAO W D, TAN Z, et al. Caps-OWKG: a capsule network model for open-world knowledge graph[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1627-1637.  10.1007/s13042-020-01259-4 
																						 | 
										
																													
																							| 17 | 
																						 
											XIONG Y, SU G P, YE S W, et al. Deeper capsule network for complex data[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.  10.1109/ijcnn.2019.8852020 
																						 | 
										
																													
																							| 18 | 
																						 
											XIANG C Q, ZHANG L, TANG Y, et al. MS-CapsNet: a novel multi-scale capsule network[J]. IEEE Signal Processing Letters, 2018, 25(12): 1850-1854.  10.1109/lsp.2018.2873892 
																						 | 
										
																													
																							| 19 | 
																						 
											AMER M, MAUL T. Path capsule networks[J]. Neural Processing Letters, 2020, 52(1): 545-559.  10.1007/s11063-020-10273-0 
																						 | 
										
																													
																							| 20 | 
																						 
											ROSARIO V M DO, BORIN E, BRETERNITZ M. The multi-lane capsule network[J]. IEEE Signal Processing Letters, 2019, 26(7): 1006-1010.  10.1109/lsp.2019.2915661 
																						 | 
										
																													
																							| 21 | 
																						 
											TISSERA D, VITHANAGE K, WIJESINGHE R, et al. Feature-dependent cross-connections in multi-path neural networks[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 4032-4039.  10.1109/icpr48806.2021.9413187 
																						 | 
										
																													
																							| 22 | 
																						 
											PHAYE S S R, SIKKA A, DHALL A, et al. Multi-level dense capsule networks[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11365. Cham: Springer, 2019: 577-592.
																						 | 
										
																													
																							| 23 | 
																						 
											SUN G C, DING S F, SUN T F, et al. A novel dense capsule network based on dense capsule layers[J]. Applied Intelligence, 2022, 52(3): 3066-3076.  10.1007/s10489-021-02630-w 
																						 | 
										
																													
																							| 24 | 
																						 
											REN Q, SHANG S H, HE L H. Adaptive routing between capsules[EB/OL]. [2021-11-09]..  10.1109/iccvw.2019.00247 
																						 | 
										
																													
																							| 25 | 
																						 
											GUO X F. CapsNet-Pytorch: Pytorch implementation for NIPS2017 paper ‘Dynamic Routing Between Capsules’[EB/OL]. [2021-11-30]..
																						 | 
										
																													
																							| 26 | 
																						 
											XI E, BING S, JIN Y. Capsule network performance on complex data[EB/OL]. [2021-10-14]..
																						 | 
										
																													
																							| 27 | 
																						 
											NAIR P, DOSHI R, KESELJ S. Pushing the limits of capsule networks[EB/OL]. [2022-01-08]..
																						 | 
										
																													
																							| 28 | 
																						 
											DELIÈGE A, CIOPPA A, VAN DROOGENBROECK M. HitNet: a neural network with capsules embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules[EB/OL]. [2021-11-30]..  10.48550/arXiv.1806.06519 
																						 | 
										
																													
																							| 29 | 
																						 
											ZHAO Z, KLEINHANS A, SANDHU G, et al. Capsule networks with Max-Min normalization[EB/OL]. [2022-02-18]..
																						 |