Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3086-3092.DOI: 10.11772/j.issn.1001-9081.2022101482
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Dan XU, Hongfang GONG(), Rongrong LUO
Received:
2022-10-11
Revised:
2023-04-04
Accepted:
2023-04-10
Online:
2023-05-24
Published:
2023-10-10
Contact:
Hongfang GONG
About author:
XU Dan, born in 1997, M. S. candidate. Her research interests include natural language processing, sentiment analysis.Supported by:
通讯作者:
龚红仿
作者简介:
徐丹(1997—),女,湖南娄底人,硕士研究生,主要研究方向:自然语言处理、情感分析基金资助:
CLC Number:
Dan XU, Hongfang GONG, Rongrong LUO. Aspect sentiment analysis with aspect item and context representation[J]. Journal of Computer Applications, 2023, 43(10): 3086-3092.
徐丹, 龚红仿, 罗容容. 具有方面项和上下文表示的方面情感分析[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3086-3092.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101482
数据集 | 积极 | 消极 | 中性 | |
---|---|---|---|---|
Restaurant | 训练集 | 994 | 870 | 464 |
测试集 | 341 | 128 | 169 | |
Laptop | 训练集 | 2 164 | 807 | 637 |
测试集 | 728 | 196 | 196 | |
训练集 | 1 567 | 1 563 | 3 127 | |
测试集 | 174 | 174 | 346 |
Tab. 1 Details of datasets
数据集 | 积极 | 消极 | 中性 | |
---|---|---|---|---|
Restaurant | 训练集 | 994 | 870 | 464 |
测试集 | 341 | 128 | 169 | |
Laptop | 训练集 | 2 164 | 807 | 637 |
测试集 | 728 | 196 | 196 | |
训练集 | 1 567 | 1 563 | 3 127 | |
测试集 | 174 | 174 | 346 |
数据集 | Batch Size | 学习率 | Dropout | L2正则化 | 头数 | 跳级 层数 |
---|---|---|---|---|---|---|
Restaurant | 32 | 3×10-5 | 0.1 | 1×10-5 | 4 | 5 |
Laptop | 32 | 5×10-5 | 0.3 | 1×10-3 | 3 | 3 |
32 | 2×10-5 | 0.2 | 1×10-3 | 3 | 6 |
Tab. 2 Values of main parameters of each dataset
数据集 | Batch Size | 学习率 | Dropout | L2正则化 | 头数 | 跳级 层数 |
---|---|---|---|---|---|---|
Restaurant | 32 | 3×10-5 | 0.1 | 1×10-5 | 4 | 5 |
Laptop | 32 | 5×10-5 | 0.3 | 1×10-3 | 3 | 3 |
32 | 2×10-5 | 0.2 | 1×10-3 | 3 | 6 |
模型 | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
ACC | F1 | ACC | F1 | ACC | F1 | |
LSTM | 74.28 | 64.71 | 66.45 | 62.79 | ― | ― |
TD-LSTM | 75.50 | 62.30 | 67.70 | 61.30 | 65.20 | 64.90 |
ATAE-LSTM | 77.20 | 63.50 | 68.70 | 63.30 | 69.40 | 67.70 |
DIMN | 80.60 | ― | 74.70 | ― | ― | ― |
AEN | 80.98 | 72.14 | 73.15 | 69.04 | 72.83 | 69.81 |
IAN | 79.26 | 70.09 | 72.05 | 67.38 | 72.50 | 70.81 |
DMMN-SDCM | 81.16 | 71.50 | 77.59 | 73.61 | ― | ― |
AOA-MultiACIA | 82.59 | 72.13 | 75.27 | 70.24 | 72.40 | 69.40 |
HGDM-PA | 81.95 | 74.07 | 74.82 | 72.53 | ― | ― |
AICR-M3net | 83.93 | 76.03 | 78.32 | 74.02 | 74.42 | 72.34 |
Tab. 3 Experimental results of aspect sentiment classification on different datasets
模型 | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
ACC | F1 | ACC | F1 | ACC | F1 | |
LSTM | 74.28 | 64.71 | 66.45 | 62.79 | ― | ― |
TD-LSTM | 75.50 | 62.30 | 67.70 | 61.30 | 65.20 | 64.90 |
ATAE-LSTM | 77.20 | 63.50 | 68.70 | 63.30 | 69.40 | 67.70 |
DIMN | 80.60 | ― | 74.70 | ― | ― | ― |
AEN | 80.98 | 72.14 | 73.15 | 69.04 | 72.83 | 69.81 |
IAN | 79.26 | 70.09 | 72.05 | 67.38 | 72.50 | 70.81 |
DMMN-SDCM | 81.16 | 71.50 | 77.59 | 73.61 | ― | ― |
AOA-MultiACIA | 82.59 | 72.13 | 75.27 | 70.24 | 72.40 | 69.40 |
HGDM-PA | 81.95 | 74.07 | 74.82 | 72.53 | ― | ― |
AICR-M3net | 83.93 | 76.03 | 78.32 | 74.02 | 74.42 | 72.34 |
跳级 层数 | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
准确率 | F1 | 准确率 | F1 | 准确率 | F1 | |
1 | 81.34 | 70.53 | 65.02 | 59.43 | 71.82 | 70.45 |
2 | 80.71 | 67.64 | 75.71 | 70.53 | 73.12 | 71.05 |
3 | 81.43 | 70.65 | 78.32 | 74.02 | 72.25 | 70.48 |
4 | 81.87 | 71.68 | 76.80 | 71.19 | 71.24 | 69.75 |
5 | 83.93 | 76.30 | 76.65 | 72.09 | 72.54 | 70.42 |
6 | 83.30 | 74.43 | 76.96 | 72.29 | 74.42 | 72.34 |
7 | 82.05 | 71.91 | 73.82 | 67.87 | 73.27 | 70.75 |
8 | 81.43 | 70.72 | 71.32 | 66.80 | 72.69 | 70.57 |
Tab. 4 Influence of number of M3net layers on accuracy and F1 score
跳级 层数 | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
准确率 | F1 | 准确率 | F1 | 准确率 | F1 | |
1 | 81.34 | 70.53 | 65.02 | 59.43 | 71.82 | 70.45 |
2 | 80.71 | 67.64 | 75.71 | 70.53 | 73.12 | 71.05 |
3 | 81.43 | 70.65 | 78.32 | 74.02 | 72.25 | 70.48 |
4 | 81.87 | 71.68 | 76.80 | 71.19 | 71.24 | 69.75 |
5 | 83.93 | 76.30 | 76.65 | 72.09 | 72.54 | 70.42 |
6 | 83.30 | 74.43 | 76.96 | 72.29 | 74.42 | 72.34 |
7 | 82.05 | 71.91 | 73.82 | 67.87 | 73.27 | 70.75 |
8 | 81.43 | 70.72 | 71.32 | 66.80 | 72.69 | 70.57 |
模型 | 单方面 | 多方面 | ||
---|---|---|---|---|
Restaurant | Laptop | Restaurant | Laptop | |
IAN | 75.40 | 72.50 | 77.70 | 71.60 |
ATBL-MHMN | 79.31 | 74.14 | 80.48 | 74.10 |
AICR-M3net | 82.60 | 77.40 | 83.50 | 78.10 |
Tab. 5 Sentiment classification accuracy on single-aspect and multi-aspect datasets
模型 | 单方面 | 多方面 | ||
---|---|---|---|---|
Restaurant | Laptop | Restaurant | Laptop | |
IAN | 75.40 | 72.50 | 77.70 | 71.60 |
ATBL-MHMN | 79.31 | 74.14 | 80.48 | 74.10 |
AICR-M3net | 82.60 | 77.40 | 83.50 | 78.10 |
1 | TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 3298-3307. |
2 | HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]// Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, LNCS 10899. Cham: Springer, 2018: 197-206. |
3 | MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 4068-4074. 10.24963/ijcai.2017/568 |
4 | WESTON J, CHOPRA S, BORDES A. Memory networks[EB/OL]. (2015-11-29) [2022-04-13].. |
5 | SUKHBAATAR S, SZLAM A, WESTON J, et al. End-to-end memory networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2440-2448. |
6 | TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016: 214-224. 10.18653/v1/d16-1021 |
7 | CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 452-461. 10.18653/v1/d17-1047 |
8 | WANG S, MAZUMDER S, LIU B, et al. Target-sensitive memory networks for aspect sentiment classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2018: 957-967. 10.18653/v1/p18-1088 |
9 | ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 4568-4578. 10.18653/v1/d19-1464 |
10 | XIAO Y, ZHOU G. Syntactic edge-enhanced graph convolutional networks for aspect-level sentiment classification with interactive attention[J]. IEEE Access, 2020, 8: 157068-157080. 10.1109/access.2020.3019277 |
11 | ZHA Y, XIE Y, HUANG Q, et al. Aspect level sentiment classification with multi-scale information[C]// Proceedings of the 2nd International Conference on Electronics, Communications and Information Technology. Piscataway: IEEE, 2021: 279-285. 10.1109/cecit53797.2021.00056 |
12 | HAN H, QIN X, ZHAO Q. Interactive attention graph convolution networks for aspect-level sentiment classification[C]// Proceedings of the 3rd International Conference on Artificial Intelligence and Advanced Manufacture. Piscataway: IEEE, 2021: 271-275. 10.1109/aiam54119.2021.00062 |
13 | BAI X, LIU P, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 503-514. 10.1109/taslp.2020.3042009 |
14 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
15 | SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[EB/OL]. (2019-04-01) [2022-07-05].. 10.1007/978-3-030-30490-4_9 |
16 | 卢天兰,陈荔. 面向方面级别情感分析的端到端多跳记忆网络[J]. 计算机应用研究, 2021, 38(5): 1409-1415, 1427. |
LU T L, CHEN L. End-to-end multi-hop memory network for aspect-level sentiment analysis[J]. Application Research of Computers, 2021, 38(5): 1409-1415, 1427. | |
17 | DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: ACL, 2014: 49-54. 10.3115/v1/p14-2009 |
18 | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 Task 4: aspect based sentiment analysis[C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, PA: ACL, 2014:27-35. 10.3115/v1/s14-2004 |
19 | WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016: 606-615. 10.18653/v1/d16-1058 |
20 | SUN C, LV L, TIAN G, et al. Deep interactive memory network for aspect-level sentiment analysis[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2021, 20(1): No.3. 10.1145/3402886 |
21 | LIN P, YANG M, LAI J. Deep mask memory network with semantic dependency and context moment for aspect level sentiment classification[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 5088-5094. 10.24963/ijcai.2019/707 |
22 | WU Z, LI Y, LIAO J, et al. Aspect-context interactive attention representation for aspect-level sentiment classification[J]. IEEE Access, 2020, 8: 29238-29248. 10.1109/access.2020.2972697 |
23 | JIA Z, BAI X, PANG S. Hierarchical gated deep memory network with position-aware for aspect-based sentiment analysis[J]. IEEE Access, 2020, 8: 136340-136347. 10.1109/access.2020.3011318 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[3] | Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution [J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. |
[4] | Kunpei YE, Xi XIONG, Zhe DING. Recruitment recommendation model based on field fusion and time weight [J]. Journal of Computer Applications, 2023, 43(7): 2133-2139. |
[5] | Nannan SUN, Chunhui PIAO, Xinna MA. Group buying recommendation method based on social relationship and time-series information [J]. Journal of Computer Applications, 2023, 43(6): 1719-1729. |
[6] | Lu CHEN, Daoxi CHEN, Yiming LU, Weizhong LU. Handwritten mathematical expression recognition model based on attention mechanism and encoder-decoder [J]. Journal of Computer Applications, 2023, 43(4): 1297-1302. |
[7] | ZHANG Jun, WU Pengli, SHI Lukui, SHI Jin, PAN Bin. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. |
[8] | Xiaojie LI, Chaoran CUI, Guangle SONG, Yaxi SU, Tianze WU, Chunyun ZHANG. Stock trend prediction method based on temporal hypergraph convolutional neural network [J]. Journal of Computer Applications, 2022, 42(3): 797-803. |
[9] | Donglin MA, Sizhou MA, Weijie WANG. Multi-site temperature prediction model based on graph convolutional network and gated recurrent unit [J]. Journal of Computer Applications, 2022, 42(1): 287-293. |
[10] | LIU Zichen, LI Xiaojuan, WEI Wei. Automatic patent price evaluation based on recurrent neural network [J]. Journal of Computer Applications, 2021, 41(9): 2532-2538. |
[11] | Huibo LI, Yunxiao ZHAO, Liang BAI. Dynamic graph representation learning method based on deep neural network and gated recurrent unit [J]. Journal of Computer Applications, 2021, 41(12): 3432-3437. |
[12] | MENG Xinyu, WANG Ruihan, ZHANG Xiping, WANG Mingjie, QIU Gang, WANG Zhengxia. Ultra-short-term wind power prediction based on empirical mode decomposition and multi-branch neural network [J]. Journal of Computer Applications, 2021, 41(1): 237-242. |
[13] | YANG Yunlong, SUN Jianqiang, SONG Guochao. Text sentiment analysis based on gated recurrent unit and capsule features [J]. Journal of Computer Applications, 2020, 40(9): 2531-2535. |
[14] | CHEN Xiukai, LU Zhihua, ZHOU Yu. Speech separation algorithm based on convolutional encoder decoder and gated recurrent unit [J]. Journal of Computer Applications, 2020, 40(7): 2137-2141. |
[15] | HUANG Weijian, LI Danyang, HUANG Yuan. Spatio-temporal hybrid prediction model for air quality [J]. Journal of Computer Applications, 2020, 40(11): 3385-3392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||