Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3683-3688.DOI: 10.11772/j.issn.1001-9081.2022111654
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Weichao DANG, Bingyang CHENG(), Gaimei GAO, Chunxia LIU
Received:
2022-11-04
Revised:
2023-05-26
Accepted:
2023-05-29
Online:
2023-06-16
Published:
2023-12-10
Contact:
Bingyang CHENG
About author:
DANG Weichao, born in 1974, Ph. D., associate professor. His research interests include intelligent computing, software reliability.Supported by:
通讯作者:
程炳阳
作者简介:
党伟超(1974—),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性基金资助:
CLC Number:
Weichao DANG, Bingyang CHENG, Gaimei GAO, Chunxia LIU. Contrastive hypergraph transformer for session-based recommendation[J]. Journal of Computer Applications, 2023, 43(12): 3683-3688.
党伟超, 程炳阳, 高改梅, 刘春霞. 基于对比超图转换器的会话推荐[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3683-3688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111654
数据集 | 点击数 | 训练会话数 | 测试会话数 | 项目数 | 平均长度 |
---|---|---|---|---|---|
Tmall | 818 479 | 351 268 | 25 898 | 40 728 | 6.69 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
Nowplaying | 136 796 | 825 304 | 89 824 | 60 417 | 7.42 |
Tab. 1 Dataset statistics after preprocessing
数据集 | 点击数 | 训练会话数 | 测试会话数 | 项目数 | 平均长度 |
---|---|---|---|---|---|
Tmall | 818 479 | 351 268 | 25 898 | 40 728 | 6.69 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
Nowplaying | 136 796 | 825 304 | 89 824 | 60 417 | 7.42 |
模型 | Tmall | Diginetica | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
POP | 2.00 | 0.90 | 1.18 | 0.28 | 2.28 | 0.86 |
Item-KNN | 9.15 | 3.31 | 35.75 | 11.57 | 15.94 | 4.91 |
FPMC | 16.06 | 7.32 | 22.14 | 6.66 | 7.36 | 2.82 |
GRU4Rec | 10.93 | 5.89 | 30.79 | 8.22 | 7.92 | 4.48 |
NARM | 23.30 | 10.70 | 48.32 | 16.00 | 18.59 | 6.93 |
STAMP | 26.47 | 13.36 | 46.62 | 15.13 | 17.66 | 6.88 |
SR-GNN | 27.57 | 13.72 | 51.26 | 17.78 | 18.87 | 7.47 |
FGNN | 25.24 | 10.39 | 50.58 | 16.84 | 18.78 | 7.15 |
S2-DHCN | 31.42 | 15.05 | 53.66 | 18.51 | 23.50 | 8.18 |
CHT | 35.61 | 17.11 | 54.07 | 18.59 | 23.13 | 8.10 |
Tab. 2 Performance comparison of different models on public datasets
模型 | Tmall | Diginetica | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
POP | 2.00 | 0.90 | 1.18 | 0.28 | 2.28 | 0.86 |
Item-KNN | 9.15 | 3.31 | 35.75 | 11.57 | 15.94 | 4.91 |
FPMC | 16.06 | 7.32 | 22.14 | 6.66 | 7.36 | 2.82 |
GRU4Rec | 10.93 | 5.89 | 30.79 | 8.22 | 7.92 | 4.48 |
NARM | 23.30 | 10.70 | 48.32 | 16.00 | 18.59 | 6.93 |
STAMP | 26.47 | 13.36 | 46.62 | 15.13 | 17.66 | 6.88 |
SR-GNN | 27.57 | 13.72 | 51.26 | 17.78 | 18.87 | 7.47 |
FGNN | 25.24 | 10.39 | 50.58 | 16.84 | 18.78 | 7.15 |
S2-DHCN | 31.42 | 15.05 | 53.66 | 18.51 | 23.50 | 8.18 |
CHT | 35.61 | 17.11 | 54.07 | 18.59 | 23.13 | 8.10 |
模型 | Tmall | Diginetica | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
CHT-I-L | 15.06 | 7.48 | 47.59 | 15.31 | 20.42 | 7.81 |
CHT-S-L | 15.06 | 7.48 | 47.59 | 15.31 | 20.42 | 7.81 |
CHT-C | 29.11 | 13.87 | 52.73 | 17.71 | 21.98 | 7.71 |
CHT-G | 29.44 | 14.03 | 48.91 | 16.94 | 22.69 | 7.34 |
CHT-L | 32.85 | 15.76 | 51.71 | 18.05 | 22.85 | 7.63 |
CHT | 35.61 | 17.11 | 54.07 | 18.59 | 23.13 | 8.10 |
Tab. 3 Ablation experiment results among CHT models
模型 | Tmall | Diginetica | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
CHT-I-L | 15.06 | 7.48 | 47.59 | 15.31 | 20.42 | 7.81 |
CHT-S-L | 15.06 | 7.48 | 47.59 | 15.31 | 20.42 | 7.81 |
CHT-C | 29.11 | 13.87 | 52.73 | 17.71 | 21.98 | 7.71 |
CHT-G | 29.44 | 14.03 | 48.91 | 16.94 | 22.69 | 7.34 |
CHT-L | 32.85 | 15.76 | 51.71 | 18.05 | 22.85 | 7.63 |
CHT | 35.61 | 17.11 | 54.07 | 18.59 | 23.13 | 8.10 |
模型 | 平均训练时间 | 模型 | 平均训练时间 |
---|---|---|---|
SR-GNN | 734.57 | S2-DHCN | 2 166.77 |
FGNN | 830.04 | CHT | 720.01 |
Tab.4 Average training time of different models on Tmall dataset
模型 | 平均训练时间 | 模型 | 平均训练时间 |
---|---|---|---|
SR-GNN | 734.57 | S2-DHCN | 2 166.77 |
FGNN | 830.04 | CHT | 720.01 |
模型 | 参数量/106 | 模型大小/MB | 内存占用/GB |
---|---|---|---|
SR-GNN | 3.91 | 14.92 | 1.55 |
FGNN | 3.83 | 14.66 | 1.41 |
S2-DHCN | 3.81 | 14.53 | 1.26 |
CHT | 3.87 | 14.75 | 1.49 |
Tab.5 Parameter number analysis of models
模型 | 参数量/106 | 模型大小/MB | 内存占用/GB |
---|---|---|---|
SR-GNN | 3.91 | 14.92 | 1.55 |
FGNN | 3.83 | 14.66 | 1.41 |
S2-DHCN | 3.81 | 14.53 | 1.26 |
CHT | 3.87 | 14.75 | 1.49 |
1 | WANG S, CAO L, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54(7): No.154. 10.1145/3465401 |
2 | 党伟超,姚志宇,白尚旺,等. 基于图模型和注意力模型的会话推荐方法[J]. 计算机应用, 2022, 42(11):3610-3616. |
DANG W C, YAO Z Y, BAI S W, et al. Session recommendation method based on graph model and attention model [J]. Journal of Computer Applications, 2022, 42(11): 3610-3616. | |
3 | 南宁,杨程屹,武志昊. 基于多图神经网络的会话感知推荐模型[J]. 计算机应用, 2021, 41(2):330-336. 10.11772/j.issn.1001-9081.2020060805 |
NAN N, YANG C Y, WU Z H. Multi-graph neural network-based session perception recommendation model[J]. Journal of Computer Applications, 2021, 41(2):330-336. 10.11772/j.issn.1001-9081.2020060805 | |
4 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295. 10.1145/371920.372071 |
5 | FENG S, LI X, ZENG Y, et al. Personalized ranking metric embedding for next new POI recommendation[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2069-2075. |
6 | MOBASHER B, DAI H, LUO T, et al. Using sequential and non-sequential patterns in predictive Web usage mining tasks[C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Piscataway: IEEE, 2002: 669-672. |
7 | ZHAN Z, ZHONG L, LIN J, et al. Sequence-aware similarity learning for next-item recommendation[J]. The Journal of Supercomputing, 2021, 77(7): 7509-7534. 10.1007/s11227-020-03555-w |
8 | HIDASI B, KARATZOGLOU A. Recurrent neural networks with top-k gains for session-based recommendations[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 843-852. 10.1145/3269206.3271761 |
9 | LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. 10.1145/3132847.3132926 |
10 | LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1831-1839. 10.1145/3219819.3219950 |
11 | WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 346-353. 10.1609/aaai.v33i01.3301346 |
12 | QIU R, LI J, HUANG Z, et al. Rethinking the item order in session-based recommendation with graph neural networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 579-588. 10.1145/3357384.3358010 |
13 | FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 3558-3565. 10.1609/aaai.v33i01.33013558 |
14 | YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: a new method for training graph convolutional networks on hypergraphs [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1511-1522. 10.1145/3340531.3411870 |
15 | XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 4503-4511. 10.1609/aaai.v35i5.16578 |
16 | ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1893-1902. 10.1145/3340531.3411954 |
17 | HWANG D, PARK J, KWON S, et al. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 10294-10305. |
18 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. 10.1145/3404835.3462862 |
19 | ZANGERLE E, PICHL M, GASSLER W, et al. #nowplaying music dataset: extracting listening behavior from Twitter[C]// Proceedings of the 1st International Workshop on Internet-Scale Multimedia Management. New York: ACM, 2014: 21-26. 10.1145/2661714.2661719 |
20 | WU X, HE R, HU Y, et al. Learning an evolutionary embedding via massive knowledge distillation[J]. International Journal of Computer Vision, 2020, 128(8/9): 2089-2106. 10.1007/s11263-019-01286-x |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[5] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[6] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[7] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[8] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[9] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[10] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[11] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[12] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[15] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||