| 1 | 王一宁,赵青杉,秦品乐,等. 基于轻量密集神经网络的医学图像超分辨率重建算法[J]. 计算机应用, 2022, 42(8): 2586-2592.  10.11772/j.issn.1001-9081.2021061093 | 
																													
																							|  | WANG Y N, ZHAO Q S, QIN P L, et al. Super-resolution reconstruction algorithm of medical image based on lightweight dense neural network[J]. Journal of Computer Applications, 2022, 42(8): 2586-2592.  10.11772/j.issn.1001-9081.2021061093 | 
																													
																							| 2 | KEYS R. Bicubic interpolation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(1): 1153-1160.  10.1109/tassp.1981.1163711 | 
																													
																							| 3 | 王汇丰,徐岩,魏一铭,等. 基于并联卷积与残差网络的图像超分辨率重建[J]. 计算机应用, 2022, 42(5): 1570-1576. | 
																													
																							|  | WANG H F, XU Y, WEI Y M, et al. Image super-resolution reconstruction based on parallel convolution and residual network[J]. Journal of Computer Applications, 2022, 42(5): 1570-1576. | 
																													
																							| 4 | DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. | 
																													
																							| 5 | DONG C, LOY C C, TANG X, et al. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 391- 407. | 
																													
																							| 6 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645.  10.1109/cvpr.2016.181 | 
																													
																							| 7 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654.  10.1109/cvpr.2016.182 | 
																													
																							| 8 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140.  10.1109/cvprw.2017.151 | 
																													
																							| 9 | TARG S, ALMEIDA D, LYMAN K. ResNet in ResNet: generalizing residual architectures [EB/OL]. (2016-03-25) [2021-12-12]. . | 
																													
																							| 10 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114.  10.1109/cvpr.2017.19 | 
																													
																							| 11 | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79. | 
																													
																							| 12 | LIU A, LIU Y, GU J, et al. Blind image super-resolution: a survey and beyond [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5461-5480.  10.1109/tpami.2023.3312313 | 
																													
																							| 13 | ZHANG K, ZUO W, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3262-3271.  10.1109/cvpr.2018.00344 | 
																													
																							| 14 | WEI Y, GU S, LI Y, et al. Unsupervised real-world image super resolution via domain-distance aware training [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13380-13389.  10.1109/cvpr46437.2021.01318 | 
																													
																							| 15 | JI X, CAO Y, TAI Y, et al. Real-world super-resolution via kernel estimation and noise injection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1914-1923.  10.1109/cvprw50498.2020.00241 | 
																													
																							| 16 | ZHANG K, LIANG J, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4771-4780.  10.1109/iccv48922.2021.00475 | 
																													
																							| 17 | ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis [J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.  10.1109/tii.2019.2943898 | 
																													
																							| 18 | CHEN C, XIONG Z, TIAN X, et al. Camera lens super-resolution[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1652-1660.  10.1109/cvpr.2019.00175 | 
																													
																							| 19 | CAI J, ZENG H, YONG H, et al. Toward real-world single image super-resolution: a new benchmark and a new model[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3086-3095.  10.1109/iccv.2019.00318 | 
																													
																							| 20 | 刘丛,王亚新. 基于双并行残差网络的遥感图像超分辨率重建[J]. 模式识别与人工智能, 2021, 34(8): 760-767. | 
																													
																							|  | LIU C, WANG Y X. Remote sensing image super-resolution reconstruction based on dual-parallel residual network [J]. Pattern Recognition and Artificial Intelligence, 2021, 34(8): 760-767. | 
																													
																							| 21 | WANG X, XIE L, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021:1905-1914.  10.1109/iccvw54120.2021.00217 | 
																													
																							| 22 | SCHÖNFELD E, SCHIELE B, KHOREVA A. A U-Net based discriminator for generative adversarial networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8204-8213.  10.1109/cvpr42600.2020.00823 | 
																													
																							| 23 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
																													
																							| 24 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-12-12].. | 
																													
																							| 25 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. | 
																													
																							| 26 | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1122-1131.  10.1109/cvprw.2017.150 |