Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 377-384.DOI: 10.11772/j.issn.1001-9081.2023020239
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Received:
2023-03-06
Revised:
2023-05-16
Accepted:
2023-05-22
Online:
2023-08-14
Published:
2024-02-10
Contact:
Jianpeng HU
About author:
HUANG Ziqi, born in 1997, M. S. candidate. His research interests include natural language processing.
Supported by:
通讯作者:
胡建鹏
作者简介:
黄子麒(1997—),男,江西赣州人,硕士研究生,CCF学生会员,主要研究方向:自然语言处理;
基金资助:
CLC Number:
Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain[J]. Journal of Computer Applications, 2024, 44(2): 377-384.
黄子麒, 胡建鹏. 实体类别增强的汽车领域嵌套命名实体识别[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 377-384.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020239
实体类别 | 备注 | 实例 | 实体数 |
---|---|---|---|
总和 | 12 204 | ||
设备单元 | 设备的名称、型号 | 主轴、夹爪 | 4 592 |
设备功能 | 设备的功能表述 | 切割、对刀 | 475 |
检修动作 | 检修设备的动作 | 更换、紧固 | 3 746 |
检修工具 | 对设备检修的工具 | 电脑、图纸 | 60 |
失效模式 | 设备的故障描述 | 电压异常 | 2 734 |
设备属性 | 设备理化属性 | 电压13.5 V | 597 |
Tab. 1 Text entity definition of automobile fault
实体类别 | 备注 | 实例 | 实体数 |
---|---|---|---|
总和 | 12 204 | ||
设备单元 | 设备的名称、型号 | 主轴、夹爪 | 4 592 |
设备功能 | 设备的功能表述 | 切割、对刀 | 475 |
检修动作 | 检修设备的动作 | 更换、紧固 | 3 746 |
检修工具 | 对设备检修的工具 | 电脑、图纸 | 60 |
失效模式 | 设备的故障描述 | 电压异常 | 2 734 |
设备属性 | 设备理化属性 | 电压13.5 V | 597 |
数据集 | 训练集 | 验证集 | 测试集 |
---|---|---|---|
CCL2022 | 2 400 | 300 | 300 |
FDoAPL | 2 543 | 318 | 318 |
CHIP2020 | 16 000 | 2 000 | 2 000 |
Tab.2 Dataset sentence division
数据集 | 训练集 | 验证集 | 测试集 |
---|---|---|---|
CCL2022 | 2 400 | 300 | 300 |
FDoAPL | 2 543 | 318 | 318 |
CHIP2020 | 16 000 | 2 000 | 2 000 |
模型参数 | 参数值 | 模型参数 | 参数值 |
---|---|---|---|
batch size | 4 | CNN窗大小 | 8.0 |
学习率 | 5×10-5 | α | 0.5 |
优化器 | AdamW | γ | 0.5 |
tail threshold | 0.6 | max_span_size | 11.0 |
Tab.3 Parameters of proposed model
模型参数 | 参数值 | 模型参数 | 参数值 |
---|---|---|---|
batch size | 4 | CNN窗大小 | 8.0 |
学习率 | 5×10-5 | α | 0.5 |
优化器 | AdamW | γ | 0.5 |
tail threshold | 0.6 | max_span_size | 11.0 |
模型 | CCL2022 | FDoAPL | ||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
序列标注 | 69.8 | 81.3 | 75.1 | 73.0 | 78.1 | 75.5 |
PURE | 78.8 | 78.5 | 78.7 | 75.6 | 80.1 | 77.8 |
SpERT | 72.8 | 81.2 | 76.8 | 77.3 | 78.7 | 78.0 |
本文模型 | 83.4 | 84.8 | 84.1 | 78.2 | 81.1 | 79.6 |
Tab.4 Entity recognition results for automotive domain
模型 | CCL2022 | FDoAPL | ||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
序列标注 | 69.8 | 81.3 | 75.1 | 73.0 | 78.1 | 75.5 |
PURE | 78.8 | 78.5 | 78.7 | 75.6 | 80.1 | 77.8 |
SpERT | 72.8 | 81.2 | 76.8 | 77.3 | 78.7 | 78.0 |
本文模型 | 83.4 | 84.8 | 84.1 | 78.2 | 81.1 | 79.6 |
FDoAPL | CHIP2020 | ||||||
---|---|---|---|---|---|---|---|
合计 | 12 204 | 1 346 | 11.0 | 合计 | 82 096 | 4 903 | 6.0 |
实体 类型 | 实体数 | 嵌套实体 | 实体 类型 | 实体数 | 嵌套实体 | ||
数量 | 占比/% | 数量 | 占比/% | ||||
设备单元 | 4 592 | 845 | 18.4 | bod | 23 580 | 4 114 | 17.4 |
设备功能 | 475 | 82 | 17.3 | dis | 20 778 | 229 | 1.1 |
检修动作 | 3 746 | 79 | 2.1 | sym | 16 399 | 2 | 0.0 |
检修工具 | 60 | 7 | 11.7 | mic | 2 492 | 23 | 0.9 |
失效模式 | 2 734 | 87 | 3.2 | pro | 8 389 | 58 | 0.6 |
性能表征 | 597 | 246 | 41.2 | ite | 3 504 | 426 | 12.2 |
dep | 458 | 2 | 0.4 | ||||
dru | 5 370 | 36 | 0.7 | ||||
equ | 1 126 | 13 | 1.2 |
Tab.5 Proportion statistics of nested entities
FDoAPL | CHIP2020 | ||||||
---|---|---|---|---|---|---|---|
合计 | 12 204 | 1 346 | 11.0 | 合计 | 82 096 | 4 903 | 6.0 |
实体 类型 | 实体数 | 嵌套实体 | 实体 类型 | 实体数 | 嵌套实体 | ||
数量 | 占比/% | 数量 | 占比/% | ||||
设备单元 | 4 592 | 845 | 18.4 | bod | 23 580 | 4 114 | 17.4 |
设备功能 | 475 | 82 | 17.3 | dis | 20 778 | 229 | 1.1 |
检修动作 | 3 746 | 79 | 2.1 | sym | 16 399 | 2 | 0.0 |
检修工具 | 60 | 7 | 11.7 | mic | 2 492 | 23 | 0.9 |
失效模式 | 2 734 | 87 | 3.2 | pro | 8 389 | 58 | 0.6 |
性能表征 | 597 | 246 | 41.2 | ite | 3 504 | 426 | 12.2 |
dep | 458 | 2 | 0.4 | ||||
dru | 5 370 | 36 | 0.7 | ||||
equ | 1 126 | 13 | 1.2 |
模型 | FDoAPL | CHIP2020 | ||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
PURE | 68.3 | 24.1 | 35.6 | 63.2 | 11.3 | 19.1 |
SpERT | 61.3 | 30.4 | 40.6 | 65.8 | 20.7 | 31.5 |
本文模型 | 67.1 | 38.5 | 48.9 | 72.4 | 28.4 | 40.8 |
Tab. 6 Nested entity recognition results
模型 | FDoAPL | CHIP2020 | ||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
PURE | 68.3 | 24.1 | 35.6 | 63.2 | 11.3 | 19.1 |
SpERT | 61.3 | 30.4 | 40.6 | 65.8 | 20.7 | 31.5 |
本文模型 | 67.1 | 38.5 | 48.9 | 72.4 | 28.4 | 40.8 |
数据集 | 长度L | 实体数 | F1值/% | ||
---|---|---|---|---|---|
PURE | SpERT | 本文模型 | |||
FDoAPL | [1,5) | 851 | 81.7 | 82.4 | 82.7 |
[5,10) | 327 | 71.5 | 64.2 | 74.1 | |
[10,+∞) | 83 | 30.4 | 51.8 | 59.3 | |
CCL2022 | [1,5) | 587 | 79.2 | 77.9 | 85.3 |
[5,10) | 116 | 70.7 | 70.5 | 75.3 | |
[10,+∞) | 10 | 30.8 | 66.7 | 76.4 | |
CHIP2020 | [1,5) | 5 052 | 67.1 | 74.2 | 77.3 |
[5,10) | 3 681 | 64.1 | 71.8 | 76.1 | |
[10,+∞) | 666 | 17.6 | 24.3 | 31.7 |
Tab.7 Comparison of F1 values for different models with different entity lengths in 3 datasets
数据集 | 长度L | 实体数 | F1值/% | ||
---|---|---|---|---|---|
PURE | SpERT | 本文模型 | |||
FDoAPL | [1,5) | 851 | 81.7 | 82.4 | 82.7 |
[5,10) | 327 | 71.5 | 64.2 | 74.1 | |
[10,+∞) | 83 | 30.4 | 51.8 | 59.3 | |
CCL2022 | [1,5) | 587 | 79.2 | 77.9 | 85.3 |
[5,10) | 116 | 70.7 | 70.5 | 75.3 | |
[10,+∞) | 10 | 30.8 | 66.7 | 76.4 | |
CHIP2020 | [1,5) | 5 052 | 67.1 | 74.2 | 77.3 |
[5,10) | 3 681 | 64.1 | 71.8 | 76.1 | |
[10,+∞) | 666 | 17.6 | 24.3 | 31.7 |
消融模型 | P | R | F1 | ||
---|---|---|---|---|---|
整体 | 嵌套实体 | 长度L>10 | |||
ECE-NER | 78.2 | 81.1 | 79.6 | 48.9 | 59.3 |
ECE-NER- 句法特征融合 | 77.6 | 80.4 | 79.0 | 48.6 | 58.7 |
ECE-NER- 实体特征构造 | 76.7 | 72.5 | 77.6 | 46.4 | 52.1 |
ECE-NER- 字符CNN编码 | 77.4 | 80.2 | 78.8 | 47.3 | 56.7 |
Tab.8 Results of ablation experiment
消融模型 | P | R | F1 | ||
---|---|---|---|---|---|
整体 | 嵌套实体 | 长度L>10 | |||
ECE-NER | 78.2 | 81.1 | 79.6 | 48.9 | 59.3 |
ECE-NER- 句法特征融合 | 77.6 | 80.4 | 79.0 | 48.6 | 58.7 |
ECE-NER- 实体特征构造 | 76.7 | 72.5 | 77.6 | 46.4 | 52.1 |
ECE-NER- 字符CNN编码 | 77.4 | 80.2 | 78.8 | 47.3 | 56.7 |
1 | MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1105-1116. 10.18653/v1/p16-1105 |
2 | HANIFAH A F, KUSUMANINGRUM R. Non-factoid answer selection in Indonesian science question answering system using Long Short-Term Memory (LSTM)[J]. Procedia Computer Science, 2021, 179: 736-746. 10.1016/j.procs.2021.01.062 |
3 | BAI T, GE Y, GUO S, et al. Enhanced natural language interface for web-based information retrieval[J]. IEEE Access, 2020, 9: 4233-4241. 10.1109/access.2020.3048164 |
4 | 赵鹏飞, 赵春江, 吴华瑞, 等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报, 2022, 38(3): 112-118. 10.11975/j.issn.1002-6819.2022.03.013 |
ZHAO P F, ZHAO C J, WU H R, et al. Recognition of the agricultural named entities with multi-feature fusion based on BERT[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 112-118. 10.11975/j.issn.1002-6819.2022.03.013 | |
5 | 刘文松, 胡竹青, 张锦辉, 等. 基于文本特征增强的电力命名实体识别[J]. 电力系统自动化, 2022, 46(21): 134-142. 10.7500/AEPS20210323003 |
LIU W S, HU Z Q, ZHANG J H, et al. Named entity recognition for electric power industry based on enhanced text features [J]. Automation of Electric Power Systems, 2022, 46: 134-142. 10.7500/AEPS20210323003 | |
6 | 马建红, 张炳斐, 张少光, 等. 基于主动MCNN-SCRF的新能源汽车命名实体识别[J]. 计算机工程与应用, 2019, 55(7): 23-29. |
MA J H, ZHANG B F, ZHANG S G, et al. Named entity recognition for new energy vehicles based on active MCNN-SCRF[J]. Computer Engineering and Applications, 2019, 55(7): 23-29. | |
7 | 张永平. 汽车领域命名实体识别方法研究[D]. 株洲: 湖南工业大学, 2016: 2-7. |
ZHANG Y P. Research on named entity recognition method in automobile field[D]. Zhuzhou: Hunan University of Technology, 2016: 2-7. | |
8 | BHATTACHARYA M, BHAT S, TRIPATHY S, et al. Improving biomedical named entity recognition through transfer learning and asymmetric tri-training[J]. Procedia Computer Science, 2023, 218: 2723-2733. 10.1016/j.procs.2023.01.244 |
9 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(Volume 1: Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
10 | LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs[C] // Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 857-867. 10.18653/v1/d15-1102 |
11 | KATIYAR A, CARDIE C. Nested named entity recognition revisited[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(Volume 1: Long Papers). Stroudsburg: ACL, 2018: 861-871. 10.18653/v1/n18-1079 |
12 | LI H, YU L, LYU M, et al. Fusion deep learning and machine learning for multi-source heterogeneous military entity recognition[C]// Proceedings of the 2021 IEEE Conference on Telecommunications, Optics and Computer Science. Piscataway: IEEE, 2021: 535-539. 10.1109/tocs53301.2021.9688813 |
13 | JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1446-1459. 10.18653/v1/n18-1131 |
14 | SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2843-2849. 10.18653/v1/d18-1309 |
15 | ZHONG Z, CHEN D. A frustratingly easy approach for entity and relation extraction[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 50-61. 10.18653/v1/2021.naacl-main.5 |
16 | EBERTS M, ULGES A. Span-based joint entity and relation extraction with transformer pre-training[EB/OL]. (2019-09-17)[2023-03-06]. . 10.18653/v1/2021.eacl-main.319 |
17 | 黄昌宁, 李玉梅, 朱晓丹. 中文文本标注规范(5.0版)[EB/OL]. 微软亚洲研究院(2006-03-27)[2023-02-10]. . |
HUANG C N, LI Y M, ZHU X D. Chinese text annotation specification (Version 5.0)[EB/OL]. Microsoft Asia Research Institute(2006-03-27)[2023-02-10]. . | |
18 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191 |
19 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-01-16)[2023-02-01]. . 10.3126/jiee.v3i1.34327 |
20 | PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. 10.3115/v1/d14-1162 |
21 | CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514. 10.1109/taslp.2021.3124365 |
22 | CHE W, FENG Y, QIN L, et al. N-LTP: an open-source neural language technology platform for Chinese[EB/OL]. (2021-09-23)[2023-03-06]. . 10.18653/v1/2021.emnlp-demo.6 |
23 | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. 10.18653/v1/2020.acl-main.519 |
24 | QI F, YANG C, LIU Z, et al. OpenHowNet: an open sememe-based lexical knowledge base[EB/OL]. (2019-01-28) [2023-03-06]. . 10.18653/v1/p19-1571 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[4] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[5] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[6] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[7] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[8] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[9] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[11] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[12] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[13] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[14] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[15] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||