Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1706-1712.DOI: 10.11772/j.issn.1001-9081.2023060833
Special Issue: CCF第38届中国计算机应用大会 (CCF NCCA 2023)
• The 38th CCF National Conference of Computer Applications (CCF NCCA 2023) • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Youren YU, Yangsen ZHANG( ), Yuru JIANG, Gaijuan HUANG
), Yuru JIANG, Gaijuan HUANG
												  
						
						
						
					
				
Received:2023-06-28
															
							
																	Revised:2023-07-27
															
							
																	Accepted:2023-08-08
															
							
							
																	Online:2023-09-04
															
							
																	Published:2024-06-10
															
							
						Contact:
								Yangsen ZHANG   
													About author:YU Youren, born in 1998, M.S. candidate. His research interests include natural language processing.Supported by:通讯作者:
					张仰森
							作者简介:于右任(1998—),男,河北石家庄人,硕士研究生,主要研究方向:自然语言处理基金资助:CLC Number:
Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information[J]. Journal of Computer Applications, 2024, 44(6): 1706-1712.
于右任, 张仰森, 蒋玉茹, 黄改娟. 融合多粒度语言知识与层级信息的中文命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1706-1712.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060833
| 数据集 | 数据集 字符数 | 实体 类别数 | 类型 | 训练集 | 验证集 | 测试集 | 
|---|---|---|---|---|---|---|
| Resume | 153 000 | 8 | 句子数 | 3 800 | 460 | 480 | 
| 实体数 | 13 400 | 1 500 | 1 630 | |||
| 字符数 | 124 100 | 13 900 | 15 100 | |||
| 103 000 | 4 | 句子数 | 1 350 | 270 | 270 | |
| 实体数 | 1 890 | 390 | 420 | |||
| 字符数 | 73 800 | 14 500 | 14 800 | |||
| MSRA | 10 400 000 | 3 | 句子数 | 46 360 | — | 4 300 | 
| 实体数 | 74 700 | — | 6 200 | |||
| 字符数 | 2 169 900 | — | 172 600 | 
Tab. 1 Datasets description
| 数据集 | 数据集 字符数 | 实体 类别数 | 类型 | 训练集 | 验证集 | 测试集 | 
|---|---|---|---|---|---|---|
| Resume | 153 000 | 8 | 句子数 | 3 800 | 460 | 480 | 
| 实体数 | 13 400 | 1 500 | 1 630 | |||
| 字符数 | 124 100 | 13 900 | 15 100 | |||
| 103 000 | 4 | 句子数 | 1 350 | 270 | 270 | |
| 实体数 | 1 890 | 390 | 420 | |||
| 字符数 | 73 800 | 14 500 | 14 800 | |||
| MSRA | 10 400 000 | 3 | 句子数 | 46 360 | — | 4 300 | 
| 实体数 | 74 700 | — | 6 200 | |||
| 字符数 | 2 169 900 | — | 172 600 | 
| 参数 | 值 | 参数 | 值 | 
|---|---|---|---|
| Batch Size | 64 | Weight decay | 10-3 | 
| Learning rate1 | 5×10-5 | Max len | 256 | 
| Learning rate2 | 10-3 | Optimizer | AdamW | 
| Dropout rate | 0.1 | 
Tab. 2 Experimental parameter setting
| 参数 | 值 | 参数 | 值 | 
|---|---|---|---|
| Batch Size | 64 | Weight decay | 10-3 | 
| Learning rate1 | 5×10-5 | Max len | 256 | 
| Learning rate2 | 10-3 | Optimizer | AdamW | 
| Dropout rate | 0.1 | 
| 数据集 | 模型 | 准确率 | 召回率 | F1值 | 
|---|---|---|---|---|
| Resume | SoftLexicon LSTM[ | 95.30 | 95.77 | 95.53 | 
| Lattice LSTM[ | 94.81 | 94.11 | 94.46 | |
| FLAT[ | — | — | 95.45 | |
| BERT[ | 94.20 | 95.80 | 95.00 | |
| PLTE[ | — | — | 95.40 | |
| SLK-NER[ | 95.20 | 96.40 | 95.80 | |
| NFLAT[ | 95.63 | 95.22 | 95.58 | |
| MECT[ | 96.40 | 95.39 | 95.89 | |
| ZEN 2.0[ | 95.34 | 96.17 | 95.75 | |
| 本文模型 | 96.79 | 96.86 | 96.83 | |
| SoftLexicon LSTM[ | 59.68 | 62.22 | 61.42 | |
| Lattice LSTM[ | 53.04 | 62.25 | 58.79 | |
| FLAT[ | — | — | 60.32 | |
| BERT[ | 61.20 | 63.90 | 62.50 | |
| PLTE[ | — | — | 59.76 | |
| SLK-NER[ | 61.80 | 66.30 | 64.00 | |
| NFLAT[ | 59.10 | 63.16 | 61.94 | |
| MECT[ | 61.91 | 62.51 | 63.30 | |
| 本文模型 | 74.31 | 63.11 | 68.25 | |
| MSRA | SoftLexicon LSTM[ | 94.63 | 92.70 | 93.66 | 
| Lattice LSTM[ | 93.57 | 92.79 | 93.18 | |
| FLAT[ | — | — | 94.12 | |
| BERT[ | 94.43 | 93.86 | 94.14 | |
| PLTE[ | — | — | 93.26 | |
| NFLAT[ | 94.92 | 94.19 | 94.55 | |
| MECT[ | 94.55 | 94.09 | 94.32 | |
| 本文模型 | 95.95 | 95.85 | 95.90 | 
Tab. 3 Comparison of experimental results among various models
| 数据集 | 模型 | 准确率 | 召回率 | F1值 | 
|---|---|---|---|---|
| Resume | SoftLexicon LSTM[ | 95.30 | 95.77 | 95.53 | 
| Lattice LSTM[ | 94.81 | 94.11 | 94.46 | |
| FLAT[ | — | — | 95.45 | |
| BERT[ | 94.20 | 95.80 | 95.00 | |
| PLTE[ | — | — | 95.40 | |
| SLK-NER[ | 95.20 | 96.40 | 95.80 | |
| NFLAT[ | 95.63 | 95.22 | 95.58 | |
| MECT[ | 96.40 | 95.39 | 95.89 | |
| ZEN 2.0[ | 95.34 | 96.17 | 95.75 | |
| 本文模型 | 96.79 | 96.86 | 96.83 | |
| SoftLexicon LSTM[ | 59.68 | 62.22 | 61.42 | |
| Lattice LSTM[ | 53.04 | 62.25 | 58.79 | |
| FLAT[ | — | — | 60.32 | |
| BERT[ | 61.20 | 63.90 | 62.50 | |
| PLTE[ | — | — | 59.76 | |
| SLK-NER[ | 61.80 | 66.30 | 64.00 | |
| NFLAT[ | 59.10 | 63.16 | 61.94 | |
| MECT[ | 61.91 | 62.51 | 63.30 | |
| 本文模型 | 74.31 | 63.11 | 68.25 | |
| MSRA | SoftLexicon LSTM[ | 94.63 | 92.70 | 93.66 | 
| Lattice LSTM[ | 93.57 | 92.79 | 93.18 | |
| FLAT[ | — | — | 94.12 | |
| BERT[ | 94.43 | 93.86 | 94.14 | |
| PLTE[ | — | — | 93.26 | |
| NFLAT[ | 94.92 | 94.19 | 94.55 | |
| MECT[ | 94.55 | 94.09 | 94.32 | |
| 本文模型 | 95.95 | 95.85 | 95.90 | 
| 模型 | Resume | MSRA | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 准确率 | 召回率 | F1值 | 准确率 | 召回率 | F1值 | 准确率 | 召回率 | F1值 | |
| 本文模型 | 96.79 | 96.86 | 96.83 | 74.31 | 63.11 | 68.25 | 95.95 | 95.85 | 95.90 | 
| -ERNIE-Gram | 95.76 | 96.50 | 96.13 | 73.29 | 61.61 | 66.95 | 95.78 | 95.18 | 95.48 | 
| -ON-LSTM | 96.18 | 96.78 | 96.48 | 73.80 | 60.15 | 66.28 | 95.03 | 96.17 | 95.60 | 
| -高效指针 | 95.92 | 95.45 | 95.69 | 72.50 | 62.50 | 67.13 | 95.79 | 95.41 | 95.60 | 
Tab. 4 Results of ablation experiments
| 模型 | Resume | MSRA | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 准确率 | 召回率 | F1值 | 准确率 | 召回率 | F1值 | 准确率 | 召回率 | F1值 | |
| 本文模型 | 96.79 | 96.86 | 96.83 | 74.31 | 63.11 | 68.25 | 95.95 | 95.85 | 95.90 | 
| -ERNIE-Gram | 95.76 | 96.50 | 96.13 | 73.29 | 61.61 | 66.95 | 95.78 | 95.18 | 95.48 | 
| -ON-LSTM | 96.18 | 96.78 | 96.48 | 73.80 | 60.15 | 66.28 | 95.03 | 96.17 | 95.60 | 
| -高效指针 | 95.92 | 95.45 | 95.69 | 72.50 | 62.50 | 67.13 | 95.79 | 95.41 | 95.60 | 
| 模型 | 准确率 | 召回率 | F1值 | 
|---|---|---|---|
| BERT-Span | 79.80 | 94.18 | 86.40 | 
| BERT-LSTM-CRF | 93.31 | 94.21 | 93.76 | 
| BERT-LSTM-高效指针 | 95.28 | 94.49 | 94.88 | 
| 本文模型 | 95.38 | 95.20 | 95.29 | 
Tab.5 Comparison experiment results on MDNER
| 模型 | 准确率 | 召回率 | F1值 | 
|---|---|---|---|
| BERT-Span | 79.80 | 94.18 | 86.40 | 
| BERT-LSTM-CRF | 93.31 | 94.21 | 93.76 | 
| BERT-LSTM-高效指针 | 95.28 | 94.49 | 94.88 | 
| 本文模型 | 95.38 | 95.20 | 95.29 | 
| 1 | 曹宗胜,许倩倩,李朝鹏,等.基于对偶四元数的协同知识图谱推荐模型[J].计算机学报,2022,45(10):2221-2242. | 
| CAO Z S, XU Q Q, LI Z P, et al. Dual quaternion based collaborative knowledge graph modeling for recommendation[J]. Chinese Journal of Computers, 2022,45(10):2221-2242. | |
| 2 | BRANDSEN A, VERBERNE S, LAMBERS K, et al. Can BERT dig it? Named entity recognition for information retrieval in the archaeology domain[J]. Journal on Computing and Cultural Heritage, 2022, 15(3): No. 51. | 
| 3 | XIA Q, ZHANG B, WANG R, et al. A unified span-based approach for opinion mining with syntactic constituents[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021:1795-1804. | 
| 4 | SONG C H, LAWRIE D J, FININ T, et al. Improving neural named entity recognition with gazetteers[EB/OL]. [2023-05-30]. . | 
| 5 | JIANG B, WU Z, KARIMI H R. A distributed dynamic event-triggered mechanism to HMM-based observer design for H∞ sliding mode control of Markov jump systems [J]. Automatica, 2022, 142: 110357. | 
| 6 | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and their Applications, 1998, 13(4): 18-28. | 
| 7 | DONG C, ZHANG J, ZONG C, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition [C]// Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing, and 24th International Conference on Computer Processing of Oriental Languages. Cham: Springer, 2016: 239-250. | 
| 8 | SHEN Y, TAN S, SORDONI A, et al. Ordered neurons: integrating tree structures into recurrent neural networks [EB/OL]. [2023-05-30]. . | 
| 9 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [EB/OL]. [2023-07-24]. . | 
| 10 | CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. | 
| 11 | PETERS M E, AMMAR W, BHAGAVATULA C, et al. Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1756-1765. | 
| 12 | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1554-1564. | 
| 13 | WU F, LIU J, WU C, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3342-3348. | 
| 14 | MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5951-5960. | 
| 15 | YANG S, TU K. Bottom-up constituency parsing and nested named entity recognition with pointer networks[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 2403-2416. | 
| 16 | ZHU E, LI J. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 7096-7108. | 
| 17 | SONG Y, ZHANG T, WANG Y, et al. ZEN 2.0: continue training and adaption for n-gram enhanced text encoders [EB/OL]. [2023-07-24]. . | 
| 18 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference on the North American Chapter of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
| 19 | WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2576-2585. | 
| 20 | XIAO D, LI Y-K, ZHANG H, et al. ERNIE-Gram: pre-training with explicitly n-gram masked language modeling for natural language understanding[C]// Proceedings of the 2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 1702-1715. | 
| 21 | SU J, LU Y, PAN S, et al. RoFormer: enhanced transformer with rotary position embedding [EB/OL]. [2023-07-24]. . | 
| 22 | PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 548-554. | 
| 23 | G-A LEVOW. The third international Chinese language processing bakeoff: word segmentation and named entity recognition[C]// Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing. Stroudsburg: ACL, 2006: 108-117. | 
| 24 | MIN K, MA C, ZHAO T, et al. BosonNLP: an ensemble approach for word segmentation and POS tagging [C]// Proceedings of the 4th CCF Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2015: 520-526. | 
| 25 | XU L, TONG Y, DONG Q, et al. CLUENER2020: fine-grained named entity recognition dataset and benchmark for Chinese [EB/OL]. [2023-07-24]. . | 
| 26 | LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice Transformer [C]// Proceedings of the 58th Annual Meeting of the Assocation for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842. | 
| 27 | MENGGE X, YU B, LIU T, et al. Porous lattice-based transformer encoder for Chinese NER [C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020: 3831-3841. | 
| 28 | HU D, WEI L. SLK-NER: exploiting second-order lexicon knowledge for Chinese NER [C/OL]// Proceedings of the 32nd International Conference on Software Engineering and Knowledge Engineering. (2020-07-16)[2023-05-30]. . | 
| 29 | WU S, SONG X, FENG Z, et al. NFLAT: non-flat-lattice transformer for Chinese named entity recognition [EB/OL]. [2023-07-24]. . | 
| 30 | WU S, SONG X, FENG Z. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 1529-1539. | 
| [1] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. | 
| [2] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. | 
| [3] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. | 
| [4] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. | 
| [5] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. | 
| [6] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. | 
| [7] | Baoshan YANG, Zhi YANG, Xingyuan CHEN, Bing HAN, Xuehui DU. Analysis of consistency between sensitive behavior and privacy policy of Android applications [J]. Journal of Computer Applications, 2024, 44(3): 788-796. | 
| [8] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. | 
| [9] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. | 
| [10] | Yushan JIANG, Yangsen ZHANG. Large language model-driven stance-aware fact-checking [J]. Journal of Computer Applications, 2024, 44(10): 3067-3073. | 
| [11] | Chenghao FENG, Zhenping XIE, Bowen DING. Selective generation method of test cases for Chinese text error correction software [J]. Journal of Computer Applications, 2024, 44(1): 101-112. | 
| [12] | Xinyue ZHANG, Rong LIU, Chiyu WEI, Ke FANG. Aspect-based sentiment analysis method with integrating prompt knowledge [J]. Journal of Computer Applications, 2023, 43(9): 2753-2759. | 
| [13] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. | 
| [14] | Xiaoyan ZHANG, Zhengyu DUAN. Cross-lingual zero-resource named entity recognition model based on sentence-level generative adversarial network [J]. Journal of Computer Applications, 2023, 43(8): 2406-2411. | 
| [15] | Zexi JIN, Lei LI, Ji LIU. Transfer learning model based on improved domain separation network [J]. Journal of Computer Applications, 2023, 43(8): 2382-2389. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||