Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 563-571.DOI: 10.11772/j.issn.1001-9081.2023020167
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Chenhui CUI1, Suzhen LIN1( ), Dawei LI2, Xiaofei LU3, Jie WU1
), Dawei LI2, Xiaofei LU3, Jie WU1
												  
						
						
						
					
				
Received:2023-02-23
															
							
																	Revised:2023-04-24
															
							
																	Accepted:2023-05-05
															
							
							
																	Online:2024-02-22
															
							
																	Published:2024-02-10
															
							
						Contact:
								Suzhen LIN   
													About author:CUI Chenhui, born in 1998, M. S. candidate. His research interests include target tracking, image processing.Supported by:通讯作者:
					蔺素珍
							作者简介:崔晨辉(1998—),男,山西晋城人,硕士研究生,CCF会员,主要研究方向:目标跟踪、图像处理基金资助:CLC Number:
Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer[J]. Journal of Computer Applications, 2024, 44(2): 563-571.
崔晨辉, 蔺素珍, 李大威, 禄晓飞, 武杰. 基于孪生网络和Transformer的红外弱小目标跟踪方法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 563-571.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020167
| 方法 | 成功率 | 精确率 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|---|---|
| KeepTrack | 84.3 | 87.9 | AGPC | 82.5 | 82.3 | 
| TransT | 76.0 | 75.1 | DNANet | 78.6 | 77.9 | 
| SiamCAR | 63.7 | 67.0 | 本文方法 | 90.2 | 89.7 | 
Tab. 1 Quantitative evaluation results of different methods on DIRST dataset
| 方法 | 成功率 | 精确率 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|---|---|
| KeepTrack | 84.3 | 87.9 | AGPC | 82.5 | 82.3 | 
| TransT | 76.0 | 75.1 | DNANet | 78.6 | 77.9 | 
| SiamCAR | 63.7 | 67.0 | 本文方法 | 90.2 | 89.7 | 
| 方法 | 成功率 | 精确率 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|---|---|
| KeepTrack | 74.8 | 73.0 | SiamCAR | 73.5 | 68.0 | 
| TransT | 72.7 | 71.8 | 本文方法 | 75.5 | 74.7 | 
Tab. 2 Quantitative evaluation results of different methods on LaTOT test set
| 方法 | 成功率 | 精确率 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|---|---|
| KeepTrack | 74.8 | 73.0 | SiamCAR | 73.5 | 68.0 | 
| TransT | 72.7 | 71.8 | 本文方法 | 75.5 | 74.7 | 
| 编号 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|
| ① | Base | 55.4 | 57.7 | 
| ② | Base+H | 60.2 | 62.3 | 
| Base+T | 70.5 | 70.3 | |
| Base+U | 68.3 | 67.0 | |
| Base+R | 66.1 | 65.8 | |
| ③ | Base+H+T | 72.9 | 72.6 | 
| Base+H+R | 69.7 | 68.5 | |
| Base+H+U | 68.8 | 68.6 | |
| Base+T+R | 78.3 | 78.4 | |
| Base+T+U | 73.2 | 72.9 | |
| Base+R+U | 71.6 | 71.5 | |
| ④ | Base+H+T+U | 80.1 | 78.9 | 
| Base+H+T+R | 86.2 | 85.6 | |
| Base+H+U+R | 79.3 | 78.0 | |
| Base+T+U+R | 84.0 | 83.9 | |
| ⑤ | Base+H+T+U+R | 90.2 | 89.7 | 
Tab. 3 Ablation experimental results
| 编号 | 方法 | 成功率 | 精确率 | 
|---|---|---|---|
| ① | Base | 55.4 | 57.7 | 
| ② | Base+H | 60.2 | 62.3 | 
| Base+T | 70.5 | 70.3 | |
| Base+U | 68.3 | 67.0 | |
| Base+R | 66.1 | 65.8 | |
| ③ | Base+H+T | 72.9 | 72.6 | 
| Base+H+R | 69.7 | 68.5 | |
| Base+H+U | 68.8 | 68.6 | |
| Base+T+R | 78.3 | 78.4 | |
| Base+T+U | 73.2 | 72.9 | |
| Base+R+U | 71.6 | 71.5 | |
| ④ | Base+H+T+U | 80.1 | 78.9 | 
| Base+H+T+R | 86.2 | 85.6 | |
| Base+H+U+R | 79.3 | 78.0 | |
| Base+T+U+R | 84.0 | 83.9 | |
| ⑤ | Base+H+T+U+R | 90.2 | 89.7 | 
| 1 | 刘征,杨德振,李江勇,等. 红外单帧弱小目标检测算法研究综述[J]. 激光与红外, 2022, 52(2): 154-162. 10.3969/j.issn.1001-5078.2022.02.002 | 
| LIU Z, YANG D Z, LI J Y, et al. A review of infrared single-frame dim small target detection algorithms[J]. Laser and Infrared, 2022, 52(2): 154-162. 10.3969/j.issn.1001-5078.2022.02.002 | |
| 2 | JAVED S, DANELLJAN M, KHAN F S, et al. Visual object tracking with discriminative filters and Siamese networks: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5):6552-6574. | 
| 3 | QIAN K, ZHOU H, RONG S, et al. Infrared dim-small target tracking via singular value decomposition and improved kernelized correlation filter[J]. Infrared Physics and Technology, 2017, 82: 18-27. 10.1016/j.infrared.2017.02.002 | 
| 4 | QIAN K, RONG S H, CHENG K H. Anti-interference small target tracking from infrared dual waveband imagery[J]. Infrared Physics and Technology, 2021, 118: No.103882. 10.1016/j.infrared.2021.103882 | 
| 5 | YAN P, YAO S, ZHU Q, et al. Real-time detection and tracking of infrared small targets based on grid fast density peaks searching and improved KCF[J]. Infrared Physics and Technology, 2022, 123: No.104181. 10.1016/j.infrared.2022.104181 | 
| 6 | 戴煜彤,陈志国,傅毅. 尺度估计和多特征融合的目标跟踪算法研究[J]. 信号处理, 2021, 37(1): 49-58. 10.16798/j.issn.1003-0530.2021.01.006 | 
| DAI Y T, CHEN Z G, FU Y. Research on target tracking algorithm based on scale estimation and multi-feature fusion[J]. Journal of Signal Processing, 2021, 37(1): 49-58. 10.16798/j.issn.1003-0530.2021.01.006 | |
| 7 | LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980. 10.1109/cvpr.2018.00935 | 
| 8 | LI Y C, YANG S. Infrared small object tracking based on Att-Siam network[J]. IEEE Access, 2022, 10: 133766-133777. 10.1109/access.2022.3171037 | 
| 9 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham: Springer, 2016: 850-865. | 
| 10 | 张文波, 刘刚, 张良,等. 改进全卷积孪生网络红外空中小目标跟踪算法[J]. 航空兵器, 2022, 29(3): 33-41. 10.12132/ISSN.1673-5048.2021.0147 | 
| ZHANG W B, LIU G, ZHANG L, et al. Improved infrared aerial small target tracking algorithm based on fully-convolutional Siamese networks[J]. Aero Weaponry, 2022, 29(3): 33-41. 10.12132/ISSN.1673-5048.2021.0147 | |
| 11 | CHEN J, HUANG B, LI J, et al. Learning spatio-temporal attention based Siamese network for tracking UAVs in the wild[J]. Remote Sensing, 2022, 14(8): 1797. 10.3390/rs14081797 | 
| 12 | CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8122-8131. 10.1109/cvpr46437.2021.00803 | 
| 13 | 梁启花,胡现韬,钟必能,等. 基于孪生网络的目标跟踪算法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5):90-103. | 
| LIANG Q H, HU X T, ZHONG B N, et al. Research progress of target tracking algorithm based on Siamese network[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(5): 90-103. | |
| 14 | GUO D, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6268-6276. 10.1109/cvpr42600.2020.00630 | 
| 15 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
| 16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. | 
| 17 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
| 18 | ZHU Y, LI C, LIU Y, et al. Tiny object tracking: a large-scale dataset and a baseline[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023(Early Access): 1-15. 10.1109/tnnls.2023.3239529 | 
| 19 | 回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[J]. 中国科学数据(中英文网络版), 2020, 5(3):291-302. 10.11922/csdata.2019.0074.zh | 
| HUI B W, SONG Z Y, FAN H Q, et al. A dataset for infrared detection and tracking of dim-small aircraft targets underground/air background[J]. China Scientific Data, 2020, 5(3): 291-302. 10.11922/csdata.2019.0074.zh | |
| 20 | ZHANG T, CAO S, PU T, et al. AGPCNet: attention-guided pyramid context networks for infrared small target detection[EB/OL]. (2021-11-05) [2023-01-05].. 10.1109/taes.2023.3238703 | 
| 21 | LI B, XIAO C, WANG L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758. 10.1109/tip.2022.3199107 | 
| 22 | MAYER C, DANELLJAN M, PAUDEL D P, et al. Learning target candidate association to keep track of what not to track[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13424-13434. 10.1109/iccv48922.2021.01319 | 
| [1] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. | 
| [2] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. | 
| [3] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. | 
| [4] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. | 
| [5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [6] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. | 
| [7] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. | 
| [8] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. | 
| [9] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. | 
| [10] | Wentao JIANG, Wanxuan LI, Shengchong ZHANG. Correlation filtering based target tracking with nonlinear temporal consistency [J]. Journal of Computer Applications, 2024, 44(8): 2558-2570. | 
| [11] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. | 
| [14] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. | 
| [15] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||