Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (12): 3930-3940.DOI: 10.11772/j.issn.1001-9081.2023121756
• Frontier and comprehensive applications • Previous Articles Next Articles
Hongru JIANG1, Wei FANG1,2,3()
Received:
2023-12-19
Revised:
2024-01-25
Accepted:
2024-02-23
Online:
2024-03-15
Published:
2024-12-10
Contact:
Wei FANG
About author:
JIANG Hongru, born in 2001, M. S. candidate. His research interests include deep learning, data correction.
Supported by:
通讯作者:
方巍
作者简介:
蒋鸿儒(2001—),男,江苏南京人,硕士研究生,主要研究方向:深度学习、数据订正;
基金资助:
CLC Number:
Hongru JIANG, Wei FANG. Survey of application of deep learning in meteorological data correction[J]. Journal of Computer Applications, 2024, 44(12): 3930-3940.
蒋鸿儒, 方巍. 深度学习在气象数据订正中的应用综述[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3930-3940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121756
传统非机器学习方法 | 优点 | 缺点 |
---|---|---|
平均值订正法 | 在稳定气候条件下计算简单 | 无法处理复杂的误差结构 |
线性回归法 | 线性关系明显的气象要素中较适用 | 无法处理非线性关系 |
系统偏差订正法 | 能够纠正仪器或系统产生的误差 | 对非常量偏差处理能力有限 |
气候标准差法 | 考虑了气象要素的多个特征 | 依赖历史数据,无法处理非气候因素 |
物理模型订正法 | 能够处理复杂的非线性关系 | 需要较多的参数,模型建立较复杂 |
Tab. 1 Analysis of advantages and disadvantages of traditional non-machine learning methods
传统非机器学习方法 | 优点 | 缺点 |
---|---|---|
平均值订正法 | 在稳定气候条件下计算简单 | 无法处理复杂的误差结构 |
线性回归法 | 线性关系明显的气象要素中较适用 | 无法处理非线性关系 |
系统偏差订正法 | 能够纠正仪器或系统产生的误差 | 对非常量偏差处理能力有限 |
气候标准差法 | 考虑了气象要素的多个特征 | 依赖历史数据,无法处理非气候因素 |
物理模型订正法 | 能够处理复杂的非线性关系 | 需要较多的参数,模型建立较复杂 |
传统机器学习方法 | 优点 | 缺点 |
---|---|---|
SVM | 可以拟合复杂的数据,适应不同的数据模式 | 在大规模和高维数据中计算复杂 |
RF | 处理非线性关系能力强,适应高维数据 | 解释性较差,存在过拟合问题 |
岭回归(Ridge) | 能够处理噪声干扰,较好地提取特征 | 对于非线性的数据集存在偏差 |
K近邻 | 对样本不均匀数据具有较好适应性 | 容易陷入局部最优解,需要适当正则化 |
Tab. 2 Analysis of advantages and disadvantages of traditional machine learning methods
传统机器学习方法 | 优点 | 缺点 |
---|---|---|
SVM | 可以拟合复杂的数据,适应不同的数据模式 | 在大规模和高维数据中计算复杂 |
RF | 处理非线性关系能力强,适应高维数据 | 解释性较差,存在过拟合问题 |
岭回归(Ridge) | 能够处理噪声干扰,较好地提取特征 | 对于非线性的数据集存在偏差 |
K近邻 | 对样本不均匀数据具有较好适应性 | 容易陷入局部最优解,需要适当正则化 |
订正方法 | 优点 | 缺点 |
---|---|---|
传统非机器订正方法 | 可解释性高,处理简单数据较灵活 | 无法处理非线性和多维数据,处理大规模数据性能差 |
传统机器学习方法 | 能处理非线性关系和高维数据,具备一定泛化能力 | 对计算和存储资源要求较高,模型拟合能力不足 |
深度学习方法 | 处理高维数据的同时有较强的表征能力,适应不同的 数据分布,具备自适应能力 | 可解释性较差,数据量不足时容易产生过拟合,训练模型需要大量时间 |
Tab. 3 Comparison between traditional methods and deep learning methods
订正方法 | 优点 | 缺点 |
---|---|---|
传统非机器订正方法 | 可解释性高,处理简单数据较灵活 | 无法处理非线性和多维数据,处理大规模数据性能差 |
传统机器学习方法 | 能处理非线性关系和高维数据,具备一定泛化能力 | 对计算和存储资源要求较高,模型拟合能力不足 |
深度学习方法 | 处理高维数据的同时有较强的表征能力,适应不同的 数据分布,具备自适应能力 | 可解释性较差,数据量不足时容易产生过拟合,训练模型需要大量时间 |
深度学习网络 | 特点 | 气象应用 |
---|---|---|
CNN | 处理网格化数据,从局部感受野中提取空间特征 | 气象雷达图像的处理 |
RNN | 处理序列数据,能够捕捉序列之间的依赖关系 | 气温、降水量等序列数据的预测 |
Transformer | 能够处理长序列并捕捉全局语义信息 | 天气预报文本的生成以及情感分析 |
GAN | 通过对抗学习的方式生成图像,具有创造性 | 生成逼真的气象图像 |
图神经网络 | 专门处理图结构数据,能捕捉图结构中的关联信息 | 关系建模、预测气象情况 |
Tab. 4 Characteristics and applications in meteorology of deep learning networks
深度学习网络 | 特点 | 气象应用 |
---|---|---|
CNN | 处理网格化数据,从局部感受野中提取空间特征 | 气象雷达图像的处理 |
RNN | 处理序列数据,能够捕捉序列之间的依赖关系 | 气温、降水量等序列数据的预测 |
Transformer | 能够处理长序列并捕捉全局语义信息 | 天气预报文本的生成以及情感分析 |
GAN | 通过对抗学习的方式生成图像,具有创造性 | 生成逼真的气象图像 |
图神经网络 | 专门处理图结构数据,能捕捉图结构中的关联信息 | 关系建模、预测气象情况 |
模型 | 参数量 | RMSE | ||
---|---|---|---|---|
[0,24] h | (24,48] h | (48,72] h | ||
YHGSM | — | 2.188 | 2.282 | 2.308 |
U-Net | 7 862 409 | 1.642 | 1.192 | 1.529 |
Att-UNet | 9 038 173 | 1.579 | 1.189 | 1.536 |
Res-UNet | 24 052 809 | 1.524 | 1.131 | 1.461 |
RA-UNet | 25 209 245 | 1.506 | 1.107 | 1.443 |
Tab. 5 Number of parameters and RMSE for different bias correction models
模型 | 参数量 | RMSE | ||
---|---|---|---|---|
[0,24] h | (24,48] h | (48,72] h | ||
YHGSM | — | 2.188 | 2.282 | 2.308 |
U-Net | 7 862 409 | 1.642 | 1.192 | 1.529 |
Att-UNet | 9 038 173 | 1.579 | 1.189 | 1.536 |
Res-UNet | 24 052 809 | 1.524 | 1.131 | 1.461 |
RA-UNet | 25 209 245 | 1.506 | 1.107 | 1.443 |
模型 | 12 h预报 | 24 h预报 | 36 h预报 | 48 h预报 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | |
BEIJING_MR | 0.81 | 1.12 | 0.70 | 0.83 | 1.12 | 0.71 | 0.83 | 1.12 | 0.74 | 0.81 | 1.25 | 0.83 |
ECMWF_HR | 0.83 | 1.17 | 0.73 | 0.83 | 1.16 | 0.76 | 0.82 | 1.15 | 0.73 | 0.82 | 1.23 | 0.80 |
GRAPES-GFS | 0.85 | 1.08 | 0.68 | 0.88 | 1.03 | 0.65 | 0.85 | 1.09 | 0.66 | 0.85 | 1.12 | 0.69 |
JAPAN_MR | 0.82 | 1.18 | 0.72 | 0.86 | 1.07 | 0.69 | 0.84 | 1.15 | 0.74 | 0.81 | 1.21 | 0.78 |
Ensemble | 0.87 | 1.04 | 0.63 | 0.91 | 0.87 | 0.57 | 0.87 | 0.98 | 0.62 | 0.86 | 1.03 | 0.62 |
Tab. 6 Error and correlation coefficient between predicted and observed values at different forecast period
模型 | 12 h预报 | 24 h预报 | 36 h预报 | 48 h预报 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | 相关系数 | 均方根值/℃ | 平均绝对误差/℃ | |
BEIJING_MR | 0.81 | 1.12 | 0.70 | 0.83 | 1.12 | 0.71 | 0.83 | 1.12 | 0.74 | 0.81 | 1.25 | 0.83 |
ECMWF_HR | 0.83 | 1.17 | 0.73 | 0.83 | 1.16 | 0.76 | 0.82 | 1.15 | 0.73 | 0.82 | 1.23 | 0.80 |
GRAPES-GFS | 0.85 | 1.08 | 0.68 | 0.88 | 1.03 | 0.65 | 0.85 | 1.09 | 0.66 | 0.85 | 1.12 | 0.69 |
JAPAN_MR | 0.82 | 1.18 | 0.72 | 0.86 | 1.07 | 0.69 | 0.84 | 1.15 | 0.74 | 0.81 | 1.21 | 0.78 |
Ensemble | 0.87 | 1.04 | 0.63 | 0.91 | 0.87 | 0.57 | 0.87 | 0.98 | 0.62 | 0.86 | 1.03 | 0.62 |
站点 | 预报气温 | LR | ANN | LSTM-FCN | ALS |
---|---|---|---|---|---|
贵阳站 | 2.02 | 1.57 | 1.55 | 1.48 | 1.48 |
原平站 | 4.15 | 2.88 | 2.63 | 2.64 | 2.60 |
福州站 | 2.82 | 1.88 | 1.80 | 1.75 | 1.72 |
台南站 | 1.86 | 1.61 | 1.55 | 1.49 | 1.49 |
Tab. 7 RMSE of 72 h forecast period’s temperature forecast at four stations from June to August, 2018
站点 | 预报气温 | LR | ANN | LSTM-FCN | ALS |
---|---|---|---|---|---|
贵阳站 | 2.02 | 1.57 | 1.55 | 1.48 | 1.48 |
原平站 | 4.15 | 2.88 | 2.63 | 2.64 | 2.60 |
福州站 | 2.82 | 1.88 | 1.80 | 1.75 | 1.72 |
台南站 | 1.86 | 1.61 | 1.55 | 1.49 | 1.49 |
预测模型 | N0 | N1 | N2 | M | 预测评分 | |
---|---|---|---|---|---|---|
DBN | 建模 | 32 | 12 | 0 | 0 | 77.88 |
预测 | 6 | 2 | 1 | 0 | 83.33 | |
逐步回归 | 建模 | 50 | 8 | 5 | 0 | 95.10 |
预测 | 5 | 2 | 0 | 0 | 73.68 |
Tab. 8 Modeling and prediction scores of DBN and stepwise regression method
预测模型 | N0 | N1 | N2 | M | 预测评分 | |
---|---|---|---|---|---|---|
DBN | 建模 | 32 | 12 | 0 | 0 | 77.88 |
预测 | 6 | 2 | 1 | 0 | 83.33 | |
逐步回归 | 建模 | 50 | 8 | 5 | 0 | 95.10 |
预测 | 5 | 2 | 0 | 0 | 73.68 |
1 | FANG W, XUE Q, SHEN L, et al. Survey on the application of deep learning in extreme weather prediction[J]. Atmosphere, 2021, 12(6): No.661. |
2 | 刘瑞婷,陈明轩,肖现,等. 雷达资料快速更新四维变分同化中增加地面资料同化对强对流临近数值预报的影响[J]. 气象学报, 2021, 79(6):921-942. |
LIU R T, CHEN M X, XIAO X, et al. The impact of assimilating surface observations in rapid-refresh four-dimensional Variational Radar Data Assimilation System on model-based severe convection nowcasting [J]. Acta Meteorologica Sinica, 2021, 79(6):921-942. | |
3 | 胡新华,况秋明,张显真. 南城自动站土壤水分资料的统计学订正分析[J]. 气象与减灾研究, 2010, 33(2): 69-72. |
HU X H, KUANG Q M, ZHANG X Z. Statistical correction of soil moisture records obtained from HYA-SF automatic station in Nancheng county[J]. Meteorology and Disaster Reduction Research, 2010, 33(2): 69-72. | |
4 | 朱俊,韩立新,宗平,等. 基于时间聚类和用户动态相似度的自适应位置推荐算法[J]. 计算机科学, 2023, 50(12):113-122. |
ZHU J, HAN L X, ZONG P, et al. Adaptive location recommendation based on time slots clustering and user dynamic similarity [J]. Computer Science, 2023, 50(12):113-122. | |
5 | 梁皓,孙丽,陈姝荞,等. 基于支持向量机算法的地震事件分类研究——以东北地区为例[J]. 地球物理学报, 2023, 66(12):5030-5040. |
LIANG H, SUN L, CHEN S Q, et al. Research on seismic event classification based on SVM algorithm: an application in Northeast China[J]. Chinese Journal of Geophysics, 2023, 66(12): 5030-5040. | |
6 | WU Y C, FENG J W. Development and application of artificial neural network[J]. Wireless Personal Communications, 2018, 102(2): 1645-1656. |
7 | 陈浩,宁忱,南卓铜,等. 基于机器学习模型的青藏高原日降水数据的订正研究[J]. 冰川冻土, 2017, 39(3):583-592. |
CHEN H, NING C, NAN Z T, et al. Correction of the daily precipitation data over the Tibetan Plateau with machine learning models[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 583-592. | |
8 | 陈杰. 基于神经网络的常规气候要素订正算法研究[D]. 南京:南京信息工程大学, 2022:4-8. |
CHEN J. Research on correction algorithm of conventional climate elements based on neural network[D]. Nanjing: Nanjing University of Information Science and Technology, 2022:4-8. | |
9 | ISLAM M, CHEN G, JIN S. An overview of neural network[J]. American Journal of Neural Networks and Applications, 2019, 5(1): 7-11. |
10 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
11 | 严毅,邓超,李琳,等. 深度学习背景下的图像语义分割方法综述[J]. 中国图象图形学报, 2023, 28(11):3342-3362. |
YAN Y, DENG C, LI L, et al. Survey of image semantic segmentation methods in the deep learning era[J]. Journal of Image and Graphics, 2023, 28(11): 3342-3362. | |
12 | 阳杰,曾鑫,吴刘仓. 测量误差数据下偏正态众数回归模型的参数估计[J]. 应用数学学报, 2023, 46(4):606-621. |
YANG J, ZENG X, WU L C. Parameter estimation for skew-normal mode regression model with measurement error data[J]. Acta Mathematicae Applicatae Sinica, 2023, 46(4): 606-621. | |
13 | 王肖. 多元气象数据方法的研究与应用[D]. 西安:西安电子科技大学, 2020:17-29. |
WANG X. Research and application of multiple meteorological data methods[D]. Xi’an: Xidian University, 2020:17-29. | |
14 | 姜淑杨,吴锐涛,鲍磊磊. 基于大数据下的气象数据安全问题及防护策略研究[J]. 网络安全技术与应用, 2023(12):109-111. |
JIANG S Y, WU R T, BAO L L. Research on meteorological data security problems and protection strategies based on big data[J]. Network Security Technology and Application, 2023(12): 109-111. | |
15 | 卢洪健,赵兰兰. 基于大数据挖掘的区域干旱预报方法及应用研究[J]. 中国防汛抗旱, 2023, 33(12):40-46. |
LU H J, ZHAO L L. Research on regional drought forecast method and its application based on big data mining [J]. China Flood and Drought Management, 2023, 33(12): 40-46. | |
16 | 陆鑫海,王辉,郑涵. 云计算环境下气象大数据服务应用[J]. 智慧中国, 2023(11):75-76. |
LU X H, WANG H, ZHENG H. Application of meteorological big data service in cloud computing environment [J]. Wisdom China, 2023(11):75-76. | |
17 | TSAGALIDIS E, EVANGELIDIS G. Exploiting domain knowledge to address class imbalance in meteorological data mining[J]. Applied Sciences, 2022, 12(23): No.12402. |
18 | AGARWAL P, TANG J, NARAYANAN A N L, et al. Big data and predictive analytics in fire risk using weather data [J]. Risk Analysis, 2020, 40(7): 1438-1449. |
19 | 孔婷,胡义成,刘卫平,等. 北疆气象站迁址气温均一性检验与订正[J]. 沙漠与绿洲气象, 2021, 15(5):116-122. |
KONG T, HU Y C, LIU W P, et al. Homogeneity test and correction of temperature series by station migration in Northern Xinjiang [J]. Desert and Oasis Meteorology, 2021, 15(5): 116-122. | |
20 | 崔妍,徐文慧,李庆祥,等. 东北地区月气温序列的均一性检验和订正[J]. 气象, 2019, 45(2):240-250. |
CUI Y, XU W H, LI Q X, et al. Homogeneity test and correction of monthly temperature in Northeast China[J]. Meteorological Monthly, 2019, 45(2): 240-250. | |
21 | 司鹏,罗传军,姜罕盛,等. 天津地面相对湿度资料的非均一性检验及订正[J]. 气象, 2018, 44(10):1332-1341. |
SI P, LUO C J, JIANG H S, et al. Inhomogeneity validation and correction of monthly surface relative humidity in Tianjin[J]. Meteorological Monthly, 2018, 44(10): 1332-1341. | |
22 | 方勉,吴慧,马凤娓,等. 三亚站气温序列非均一性检验订正及其变化特征分析[J]. 热带农业科学, 2023, 43(2):110-116. |
FANG M, WU H, MA F W, et al. Comparison characteristics and inhomogeneity adjustments of surface air temperature series for Sanya meteorological station[J]. Chinese Journal of Tropical Agriculture, 2023, 43(2): 110-116. | |
23 | 胡义成,张正阳,王秋香. 喀什站高空温度资料均一性检验与订正[J]. 沙漠与绿洲气象, 2019, 13(6):65-72. |
HU Y C, ZHANG Z Y, WANG Q X. Homogeneity test and correction of upper air temperature data in Kashgar meteorological station [J]. Desert and Oasis Meteorology, 2019, 13(6):65-72. | |
24 | 蒋国荣,沙文钰. 中期数值天气预报的误差订正方法探讨[J]. 气象科学, 1999, 19(4):381-387. |
JIANG G R, SHA W Y. A study of error correction for medium range weather forecasting [J]. Scientia Meteorologica Sinica, 1999, 19(4):381-387. | |
25 | 袁红. 基于时空偏最小二乘回归的短临降水集合预报订正算法研究[D]. 兰州:兰州大学, 2023: 4-15. |
YUAN H. Correction algorithm of short-term precipitation ensemble forecasts based on spatio-temporal PLS regression [D]. Lanzhou: Lanzhou University, 2023: 4-15. | |
26 | 曾小团,翟舒楠,梁依玲,等. 数值天气预报在广西的业务应用与进展[J]. 气象研究与应用, 2020, 41(4):34-41. |
ZENG X T, ZHAI S N, LIANG Y L, et al. Operational application and progress of numerical weather forecast in Guangxi [J]. Journal of Meteorological Research and Application, 2020, 41(4): 34-41. | |
27 | 杨杰. 地表气温观测仪器与辐射误差订正方法研究[D]. 南京:南京信息工程大学, 2017:16-24. |
YANG J. Research of surface air temperature observation instrument and radiation error correction method [D]. Nanjing: Nanjing University of Information Science and Technology, 2017: 16-24. | |
28 | 王宇星,杨学联,蔡琼琼,等. 一种台风风场动力学订正方法的研究[J]. 灾害学, 2017, 32(4):51-59. |
WANG Y X, YANG X L, CAI Q Q, et al. Investigation on a dynamical correction method of wind field in typhoons [J]. Journal of Catastrophology, 2017, 32(4): 51-59. | |
29 | 门晓磊,焦瑞莉,王鼎,等. 基于机器学习的华北气温多模式集合预报的订正方法[J]. 气候与环境研究, 2019, 24(1):116-124. |
MEN X L, JIAO R L, WANG D, et al. A temperature correction method for multi-model ensemble temperature in North China based on machine learning [J]. Climatic and Environmental Research, 2019, 24(1): 116-124. | |
30 | 高丰伟,田睿,周浩,等. 基于Spark MLlib中决策树算法对阿尔及利亚森林火灾的预测研究[J]. 四川林业科技, 2023, 44(5):24-31. |
GAO F W, TIAN R, ZHOU H, et al. Forest fire prediction in Algeria based on decision tree algorithm in Spark MLlib [J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(5): 24-31. | |
31 | 邓居昌,覃卫坚,韦文山. 机器学习算法在气候模式降水预测中的订正研究[J]. 计算机与数字工程, 2022, 50(11):2428-2434. |
DENG J C, QIN W J, WEI W S. Research on correction of machine learning algorithms in climate model precipitation prediction [J]. Computer and Digital Engineering, 2022, 50(11): 2428-2434. | |
32 | 胡莹莹,庞林,王启光. 基于深度学习的7~15 d温度格点预报偏差订正[J]. 应用气象学报, 2023, 34(4):426-437. |
HU Y Y, PANG L, WANG Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days[J]. Journal of Applied Meteorological Science, 2023, 34(4):426-437. | |
33 | 朱延和. 基于U-net神经网络的新疆地面气温和风的预报订正研究[D]. 南京:南京信息工程大学, 2023:18-26. |
ZHU Y H. Study on forecast and correction of surface air temperature and wind in Xinjiang based on U-net neural network[D]. Nanjing: Nanjing University of Information Science and Technology, 2023:18-26. | |
34 | 李明,来国红,常晏鸣,等. 深度学习算法中不同优化器的性能分析[J]. 信息技术与信息化, 2022(3):206-209. |
LI M, LAI G H, CHANG Y M, et al. Performance analysis of different optimizers in deep learning algorithm [J]. Information Technology and Informatization, 2022(3): 206-209. | |
35 | 庞继超. 基于深度学习的次季节最高气温模式修正及概率预报[D]. 福州:福建师范大学, 2022.:1-26. |
PANG J C. Modification and probabilistic forecast of sub-seasonal maximum temperature based on deep learning [D]. Fuzhou: Fujian Normal University, 2022: 1-26. | |
36 | CAI Y, LI Q, FAN Y, et al. An automatic trough line identification method based on improved UNet [J]. Atmospheric Research, 2021, 264: No.105839. |
37 | SHA Y, GAGNE D J, II, WEST G, et al. Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part Ⅱ: daily precipitation[J]. Journal of Applied Meteorology and Climatology, 2020, 59(12): 2075-2092. |
38 | 李恒升,元保军,常越. 气象数据三维可视化产品应用研究[J]. 气象与环境科学, 2023, 46(1):106-111. |
LI H S, YUAN B J, CHANG Y. Research on application of meteorological data 3D visualization products [J]. Meteorological and Environmental Sciences, 2023, 46(1): 106-111. | |
39 | HAN L, CHEN M, CHEN K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444-1459. |
40 | SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. |
41 | 张延彪,陈明轩,韩雷,等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1):153-167. |
ZHANG Y B, CHEN M X, HAN L, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. Acta Meteorologica Sinica, 2022, 80(1):153-167. | |
42 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
43 | HU Y F, YIN F K, ZHANG W M. Deep learning‐based precipitation bias correction approach for Yin-He global spectral model [J]. Meteorological Applications, 2021, 28(5): No.e2032. |
44 | 张正达. 基于天气预报订正及多特征融合的输电线路覆冰等级预测[D]. 南京:南京信息工程大学, 2023:15-26. |
ZHANG Z D. Prediction of icing grade of transmission lines based on meteorological forecast correction and multi-feature fusion[D]. Nanjing: Nanjing University of Information Science and Technology, 2023: 15-26. | |
45 | 房善普. 基于集成学习和U-ConvLSTM网络的多模式气温预报算法研究[D]. 南京:南京信息工程大学, 2023:2-15. |
FANG S P. Research on multi-mode temperature forecasting algorithm based on ensemble learning and U-ConvLSTM network[D]. Nanjing: Nanjing University of Information Science and Technology, 2023: 2-15. | |
46 | 陈昱文,黄小猛,李熠,等. 基于ECMWF产品的站点气温预报集成学习误差订正[J]. 应用气象学报, 2020, 31(4):494-503. |
CHEN Y W, HUANG X M, LI Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products [J]. Journal of Applied Meteorological Science, 2020, 31(4): 494-503. | |
47 | 李紫丁. 基于深度学习的气象要素格点预报模式订正[D]. 长沙:湖南师范大学, 2019:4-18. |
LI Z D. Lattice forecast revision of meteorological elements based on deep learning [D]. Changsha: Hunan Normal University, 2019:4-18. | |
48 | 郭雪东,张颖,曾志群,等. 基于Transformer的智能洪水预报模型及其应用研究[J]. 水电与新能源, 2023, 37(11):32-35, 39. |
GUO X D, ZHANG Y, ZENG Z Q, et al. Intelligent flood forecasting model based on Transformer and its application [J]. Hydropower and New Energy, 2023, 37(11): 32-35, 39. | |
49 | AZAD R, HEIDARI M, WU Y, et al. Contextual attention network: Transformer meets U-Net [C]// Proceedings of the 2022 International Workshop on Machine Learning in Medical Imaging, LNCS 13583. Cham: Springer, 2022: 377-386. |
50 | 李清格,杨小冈,卢瑞涛,等. 计算机视觉中的Transformer发展综述[J]. 小型微型计算机系统, 2023, 44(4):850-861. |
LI Q G, YANG X G, LU R T, et al. Transformer in computer vision: a survey [J]. Journal of Chinese Computer Systems, 2023, 44(4):850-861. | |
51 | 张依然. 基于集成学习模型和CNN-ALSTM的气象要素预测研究[D]. 石家庄:河北师范大学, 2023:9-13. |
ZHANG Y R. Research on weather elements prediction based on ensemble learning model and CNN-ALSTM[D]. Shijiazhuang: Hebei Normal University, 2023: 9-13. | |
52 | 王琳. 基于多模式集合的季节-年际气候预测方法研究[D]. 武汉:中国地质大学, 2020:3-15. |
WANG L. Study on seasonal to interannual climate prediction with multi-model ensemble method[D]. Wuhan: China University of Geosciences, 2020: 3-15. | |
53 | 黄颖,金龙,周秀华. 基于深度置信网络的影响广西热带气旋年频数预测方法研究[J]. 数学的实践与认识, 2023, 53(2):159-173. |
HUANG Y, JIN L, ZHOU X H. A deep belief network prediction scheme for the annual frequency of tropical cyclones[J]. Mathematics in Practice and Theory, 2023, 53(2):159-173. | |
54 | 黄颖,陆虹,黄小燕,等. 基于EOF和LSTM的广西月降水量预测模型研究[J]. 气象研究与应用, 2023, 44(2):20-26. |
HUANG Y, LU H, HUANG X Y, et al. Study on monthly precipitation prediction model in Guangxi based on EOF and LSTM[J]. Journal of Meteorological Research and Application, 2023, 44(2):20-26. | |
55 | 王鹏. 基于深度学习的城市宜居性气候因子短时预测研究[D]. 天津:天津理工大学, 2023:1-14. |
WANG P. Short-time prediction of urban livability climate factors based on deep learning[D]. Tianjin: Tianjin University of Technology, 2023: 1-14. | |
56 | 杨淑贤. 基于深度学习方法对长江中下游夏季降水和气温季节预测的研究[D]. 南京:南京信息工程大学, 2023:17-28. |
YANG S X. Study on seasonal prediction of summer precipitation and temperature in the middle and lower reaches of the Yangtze River based on deep learning method[D]. Nanjing: Nanjing University of Information Science and Technology, 2023:17-28. | |
57 | SINGH A, MUSHTAQ Z, ABOSAQFF H A, et al. Enhancing ransomware attack detection using transfer learning and deep learning ensemble models on cloud-encrypted data[J]. Electronics, 2023, 12(18): No.3899. |
58 | LU P, MORRIS M, BRAZELL S, et al. Using generative adversarial networks to improve deep-learning fault interpretation networks [J]. The Leading Edge, 2018, 37(8): 578-583. |
59 | CHIANG W L, LIU X, SI S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 257-266. |
60 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-12-12]. . |
61 | MONTANARI, KUHNKE L, LAAK A TER, et al. Modeling physico-chemical ADMET endpoints with multitask graph convolutional networks [J]. Molecules, 2020, 25(1): No.44. |
62 | DENG D, LEI Z, HONG X, et al. Describe molecules by a heterogeneous graph neural network with transformer-like attention for supervised property predictions [J]. ACS Omega, 2022, 7(4): 3713-3721. |
63 | SECKLER H, METZLER R. Author correction: Bayesian deep learning for error estimation in the analysis of anomalous diffusion[J]. Nature Communications, 2023, 14: No.7876. |
64 | 刘全,翟建伟,章宗长,等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1):1-27. |
LIU Q, ZHAI J W, ZHANG Z Z, et al. A survey on deep reinforcement learning [J]. Chinese Journal of Computers, 2018, 41(1): 1-27. | |
65 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge [J]. Nature, 2017, 550(7676): 354-359. |
66 | MORAVČIK M, SCHMID M, BURCH N, et al. DeepStack: expert-level artificial intelligence in heads-up no-limit poker [J]. Science, 2017, 356(6337): 508-513. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||