OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
2
RAMÍREZ D, VÍA J, SANTAMARÍA I, et al. Entropy and Kullback-Leibler divergence estimation based on Szegö's theorem[C]// Proceedings of the 17th European Signal Processing Conference. Piscataway: IEEE, 2009: 2470-2474.
3
LONG J, ZHANG J, XIANG N, et al. An iterative maximum entropy thresholding algorithm [C]// Proceedings of the 2016 International Conference on Cyberworlds. Piscataway: IEEE, 2016: 171-174.
4
DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures [J]. Communications of the ACM, 1972, 15(1): 11-15.
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
8
RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
9
LIU D, ZHANG H, ZHAO M, et al. Brain tumor segmentation based on dilated convolution refine networks [C]// Proceedings of the IEEE 16th International Conference on Software Engineering Research, Management and Applications. Piscataway: IEEE, 2018: 113-120.
10
PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation [EB/OL]. [2024-03-23]. .
11
PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 7276-7283.
12
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2024-03-23]. .
13
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
14
NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach [C]// Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 286-291.
15
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]// Proceedings of the2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
16
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2204-2212.
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2024-03-23]. .
19
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2024-03-23]. .
20
QIN Z, ZHANG P, LI X. Ultra fast deep lane detection with hybrid anchor driven ordinal classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 2555-2568.