Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 655-661.DOI: 10.11772/j.issn.1001-9081.2024020225
• Multimedia computing and computer simulation • Previous Articles
					
						                                                                                                                                                                                                                                                    Jiayang GUI1, Shunji WANG1, Zhengkang ZHOU2, Jiashan TANG1( )
)
												  
						
						
						
					
				
Received:2024-03-04
															
							
																	Revised:2024-04-09
															
							
																	Accepted:2024-04-15
															
							
							
																	Online:2024-06-04
															
							
																	Published:2025-02-10
															
							
						Contact:
								Jiashan TANG   
													About author:GUI Jiayang, born in 1998, M. S. candidate. Her research interests include computer vision, object detection.Supported by:通讯作者:
					唐加山
							作者简介:桂佳扬(1998—),女,河南平顶山人,硕士研究生,主要研究方向:计算机视觉、目标检测基金资助:CLC Number:
Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n[J]. Journal of Computer Applications, 2025, 45(2): 655-661.
桂佳扬, 王顺吉, 周正康, 唐加山. 基于改进YOLOv8n的隧道内异物检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 655-661.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020225
| 类别 | 数据描述 | 
|---|---|
| 动物类 | 隧道内出现的动物,主要包括猫和狗等 | 
| 抛洒垃圾类 | 隧道内散落的垃圾,如袋状和包裹状物等 | 
| 道路安全设施类 | 隧道内歪倒的路面安全设施,例如锥桶、 防撞桶和轮胎等 | 
Tab. 1 Description of tunnel foreign object dataset
| 类别 | 数据描述 | 
|---|---|
| 动物类 | 隧道内出现的动物,主要包括猫和狗等 | 
| 抛洒垃圾类 | 隧道内散落的垃圾,如袋状和包裹状物等 | 
| 道路安全设施类 | 隧道内歪倒的路面安全设施,例如锥桶、 防撞桶和轮胎等 | 
| 类别 | 训练集 | 测试集 | 共计 | 
|---|---|---|---|
| 共计 | 2 710 | 725 | 3 435 | 
| 抛洒垃圾类 | 888 | 281 | 1 122 | 
| 动物类 | 902 | 220 | 1 169 | 
| 道路安全设施类 | 920 | 224 | 1 144 | 
Tab. 2 Training set and test set sample quantity information
| 类别 | 训练集 | 测试集 | 共计 | 
|---|---|---|---|
| 共计 | 2 710 | 725 | 3 435 | 
| 抛洒垃圾类 | 888 | 281 | 1 122 | 
| 动物类 | 902 | 220 | 1 169 | 
| 道路安全设施类 | 920 | 224 | 1 144 | 
| 注意力机制 | P/% | R/% | mAP@0.5/% | 参数量/106 | 模型 大小/MB | 
|---|---|---|---|---|---|
| 基线模型 | 82.1 | 67.5 | 73.9 | 3.006 | 6.2 | 
| +C2f_CBAM | 82.5 | 64.5 | 72.5 | 3.034 | 6.3 | 
| +C2f_SE | 84.4 | 68.0 | 70.9 | 3.009 | 6.3 | 
| +C2f_CA | 82.8 | 72.5 | 76.8 | 3.015 | 6.3 | 
Tab. 3 Results of comparative experiments of attention mechanisms
| 注意力机制 | P/% | R/% | mAP@0.5/% | 参数量/106 | 模型 大小/MB | 
|---|---|---|---|---|---|
| 基线模型 | 82.1 | 67.5 | 73.9 | 3.006 | 6.2 | 
| +C2f_CBAM | 82.5 | 64.5 | 72.5 | 3.034 | 6.3 | 
| +C2f_SE | 84.4 | 68.0 | 70.9 | 3.009 | 6.3 | 
| +C2f_CA | 82.8 | 72.5 | 76.8 | 3.015 | 6.3 | 
| C2f_CA | HRNet_Fusion | C2 | WIoU | mAP@0.5/% | 参数量/106 | 模型 大小/MB | 
|---|---|---|---|---|---|---|
| 73.9 | 3.006 | 6.2 | ||||
| √ | 76.8 | 3.015 | 6.3 | |||
| √ | 75.0 | 3.019 | 6.3 | |||
| √ | 76.6 | 2.597 | 5.6 | |||
| √ | √ | 77.0 | 2.618 | 5.9 | ||
| √ | 74.5 | 3.006 | 6.2 | |||
| √ | √ | √ | 78.6 | 2.627 | 6.0 | |
| √ | √ | √ | 78.8 | 2.627 | 6.0 | |
| √ | √ | √ | √ | 79.9 | 2.627 | 6.0 | 
Tab. 4 Results of ablation experiments
| C2f_CA | HRNet_Fusion | C2 | WIoU | mAP@0.5/% | 参数量/106 | 模型 大小/MB | 
|---|---|---|---|---|---|---|
| 73.9 | 3.006 | 6.2 | ||||
| √ | 76.8 | 3.015 | 6.3 | |||
| √ | 75.0 | 3.019 | 6.3 | |||
| √ | 76.6 | 2.597 | 5.6 | |||
| √ | √ | 77.0 | 2.618 | 5.9 | ||
| √ | 74.5 | 3.006 | 6.2 | |||
| √ | √ | √ | 78.6 | 2.627 | 6.0 | |
| √ | √ | √ | 78.8 | 2.627 | 6.0 | |
| √ | √ | √ | √ | 79.9 | 2.627 | 6.0 | 
| 算法 | AP/% | mAP@0.5/% | 参数量/106 | 模型大小/MB | FPS | ||
|---|---|---|---|---|---|---|---|
| 动物类 | 抛洒垃圾类 | 道路安全设施类 | |||||
| Faster-RCNN | 93.9 | 43.6 | 84.2 | 73.9 | 41.358 | 315.9 | 89 | 
| Cascade-RCNN | 89.8 | 44.7 | 82.8 | 72.4 | 69.158 | 528.0 | 54 | 
| YOLOv3-tiny | 77.1 | 48.0 | 79.3 | 68.1 | 12.129 | 24.4 | 124 | 
| YOLOv5n | 79.5 | 49.0 | 82.4 | 70.3 | 2.504 | 5.3 | 227 | 
| YOLOv6n | 82.3 | 46.7 | 83.3 | 70.8 | 4.234 | 8.7 | 150 | 
| YOLOv7n | 75.5 | 64.1 | 81.4 | 73.7 | 37.205 | 74.8 | 101 | 
| YOLOv8n | 81.2 | 56.2 | 84.4 | 73.9 | 3.006 | 6.2 | 169 | 
| 本文算法 | 88.4 | 60.5 | 90.7 | 79.9 | 2.627 | 6.0 | 138 | 
Tab. 5 Results of comparative experiments of different algorithms
| 算法 | AP/% | mAP@0.5/% | 参数量/106 | 模型大小/MB | FPS | ||
|---|---|---|---|---|---|---|---|
| 动物类 | 抛洒垃圾类 | 道路安全设施类 | |||||
| Faster-RCNN | 93.9 | 43.6 | 84.2 | 73.9 | 41.358 | 315.9 | 89 | 
| Cascade-RCNN | 89.8 | 44.7 | 82.8 | 72.4 | 69.158 | 528.0 | 54 | 
| YOLOv3-tiny | 77.1 | 48.0 | 79.3 | 68.1 | 12.129 | 24.4 | 124 | 
| YOLOv5n | 79.5 | 49.0 | 82.4 | 70.3 | 2.504 | 5.3 | 227 | 
| YOLOv6n | 82.3 | 46.7 | 83.3 | 70.8 | 4.234 | 8.7 | 150 | 
| YOLOv7n | 75.5 | 64.1 | 81.4 | 73.7 | 37.205 | 74.8 | 101 | 
| YOLOv8n | 81.2 | 56.2 | 84.4 | 73.9 | 3.006 | 6.2 | 169 | 
| 本文算法 | 88.4 | 60.5 | 90.7 | 79.9 | 2.627 | 6.0 | 138 | 
| 1 | 肖添文,徐永能,徐欣怡. 城市轨道交通隧道异物侵入检测与控制方法[J]. 电气技术, 2019, 20(S1): 48-52, 56. | 
| XIAO T W, XU Y N, XU X Y. Methods for detecting and controlling foreign body invasion in urban rail transit tunnels[J]. Electrical Engineering, 2019, 20(S1): 48-52, 56. | |
| 2 | 宋晓凤. 基于结构光测量技术的铁路隧道口异物检测方法研究[D]. 北京:北京交通大学, 2020. | 
| SONG X F. Study on the railway tunnel entrance obstacle detection method based on structured light measurement technology[D]. Beijing: Beijing Jiaotong University, 2020. | |
| 3 | 陈锴迪. 隧道线路异物检测系统研究[D]. 北京:北京交通大学, 2020. | 
| CHEN K D. Research on foreign body detection system in tunnel line[D]. Beijing: Beijing Jiaotong University, 2020. | |
| 4 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision. Piscataway: IEEE, 2014: 580-587. | 
| 5 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
| 6 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. | 
| 7 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-11-29].. | 
| 8 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-12-09].. | 
| 9 | LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-09].. | 
| 10 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. | 
| 11 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. | 
| 12 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| 13 | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-09-10].. | 
| 14 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. | 
| 15 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. | 
| 16 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. | 
| 17 | 李文举,张干,崔柳,等. 基于坐标注意力的轻量级交通标志识别模型[J]. 计算机应用, 2023, 43(2): 608-614. | 
| LI W J, ZHANG G, CUI L, et al. Lightweight traffic sign recognition model based on coordinate attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614. | |
| 18 | KOBYLINSKI P, WIERZBOWSKI M, PIOTROWSKI K. High-resolution net load forecasting for micro-neighbourhoods with high penetration of renewable energy sources[J]. International Journal of Electrical Power and Energy Systems, 2020, 117: No.105635. | 
| 19 | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. | 
| 20 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018:3-19. | 
| 21 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. | 
| [1] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. | 
| [2] | Shijia WEN, Shijun JING. Dynamic visual SLAM algorithm incorporating object detection and feature point association [J]. Journal of Computer Applications, 2025, 45(2): 610-615. | 
| [3] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. | 
| [4] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. | 
| [5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [6] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. | 
| [7] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. | 
| [8] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [9] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [10] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. | 
| [11] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. | 
| [12] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. | 
| [13] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | 
| [14] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. | 
| [15] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||