[1] |
陈浩泷,陈罕之,韩凯峰,等. 垂直领域大模型的定制化:理论基础与关键技术[J]. 数据采集与处理, 2024, 39(3): 524-546.
|
|
CHEN H L, CHEN H Z, HAN K F, et al. Customization of vertical domain large model: theoretical basis and key technology[J]. Journal of Data Acquisition and Processing, 2024, 39(3): 524-546.
|
[2] |
郭华源,刘盼,卢若谷,等. 人工智能大模型医学应用研究[J]. 中国科学:生命科学, 2024, 54(3):482-506.
|
|
GUO H Y, LIU P, LU R G, et al. Research on a massively large artificial intelligence model and its application in medicine[J]. SCIENTIA SINICA Vitae, 2024, 54(3):482-506.
|
[3] |
OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 27730-27744.
|
[4] |
BAI Y, KADAVATH S, KUNDU S, et al. Constitutional AI: harmlessness from AI feedback[EB/OL]. [2024-08-15]..
|
[5] |
LEE H, PHATALE S, MANSOOR H, et al. RLAIF: scaling reinforcement learning from human feedback with AI feedback[EB/OL]. [2024-08-15]..
|
[6] |
RAFAILOV R, SHARMA A, MITCHELL E, et al. Direct preference optimization: your language model is secretly a reward model[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 53728-53741.
|
[7] |
CHENG J, LIU X, ZHENG K, et al. Black-box prompt optimization: aligning large language models without model training[C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 3201-3219.
|
[8] |
WANG Y, KORDI Y, MISHRA S, et al. Self-Instruct: aligning language models with self-generated instructions[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 13484-13508.
|
[9] |
SUN Z, SHEN Y, ZHOU Q, et al. Principle-driven self-alignment of language models from scratch with minimal human supervision[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 2511-2565.
|
[10] |
SHIN T, RAZEGHI Y, LOGAN R L, Ⅳ, et al. AutoPrompt: eliciting knowledge from language models with automatically generated prompts[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4222-4235.
|
[11] |
ZHOU Y, MURESANU A I, HAN Z, et al. Large language models are human-level prompt engineers[EB/OL]. [2024-07-21]..
|
[12] |
YANG C, WANG X, LU Y, et al. Large language models as optimizers[EB/OL]. [2024-07-21]..
|
[13] |
SUZGUN M, SCALES N, SCHÄRLI N, et al. Challenging big-bench tasks and whether chain-of-thought can solve them[C]// Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg: ACL, 2023: 13003-13051.
|
[14] |
LIU X, ZHENG Y, DU Z, et al. GPT understands, too[J]. AI Open, 2024, 5: 208-215.
|
[15] |
LESTER B, AL-RFOU R, CONSTANT N. The power of scale for parameter-efficient prompt tuning[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 3045-3059.
|
[16] |
LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4582-4597.
|
[17] |
WANG Y, YU Z, ZENG Z, et al. PandaLM: an automatic evaluation benchmark for LLM instruction tuning optimization[EB/OL]. [2024-07-21]..
|
[18] |
ZHENG L, CHIANG W L, SHENG Y, et al. Judging LLM-as-a-judge with MT-bench and Chatbot Arena[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 46595-46623.
|
[19] |
CHEN X, LIANG C, HUANG D, et al. Symbolic discovery of optimization algorithms[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 49205-49233.
|
[20] |
WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2020: 38-45.
|
[21] |
HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-07-21]..
|
[22] |
REN Q, LI K, YANG D, et al. TCM function multi-classification approach using deep learning models[C]// Proceedings of the 2023 International Conference on Web Information Systems and Applications, LNCS 14094. Singapore: Springer, 2023: 246-258.
|