Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 755-764.DOI: 10.11772/j.issn.1001-9081.2024101477
• Frontier research and typical applications of large models • Previous Articles Next Articles
Chengzhe YUAN1,2, Guohua CHEN2,3(), Dingding LI2,3, Yuan ZHU3, Ronghua LIN2,3, Hao ZHONG2,3, Yong TANG3,4
Received:
2024-10-21
Revised:
2025-02-15
Accepted:
2025-02-19
Online:
2025-03-04
Published:
2025-03-10
Contact:
Guohua CHEN
About author:
YUAN Chengzhe, born in 1991, Ph. D., lecturer. His research interests include text summarization, structured data generation, academic knowledge graph, data cleaning.Supported by:
袁成哲1,2, 陈国华2,3(), 李丁丁2,3, 朱源3, 林荣华2,3, 钟昊2,3, 汤庸3,4
通讯作者:
陈国华
作者简介:
袁成哲(1991—),男,湖南汉寿人,讲师,博士,CCF会员,主要研究方向:文本摘要、结构化数据生成、学者知识图谱、数据清洗基金资助:
CLC Number:
Chengzhe YUAN, Guohua CHEN, Dingding LI, Yuan ZHU, Ronghua LIN, Hao ZHONG, Yong TANG. ScholatGPT: a large language model for academic social networks and its intelligent applications[J]. Journal of Computer Applications, 2025, 45(3): 755-764.
袁成哲, 陈国华, 李丁丁, 朱源, 林荣华, 钟昊, 汤庸. ScholatGPT:面向学术社交网络的大语言模型及智能应用[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 755-764.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101477
问题 | 类别 | 问题数 | 示例问题 |
---|---|---|---|
Q1 | 学者简介 | 30 | 介绍张三教授的研究领域和主要成就。 |
Q2 | 领域代表学者 | 30 | 某领域内的著名学者有哪些?他们的贡献是什么? |
Q3 | 学术成果推荐 | 30 | 请推荐2023年在自然语言处理领域发表的高影响力论文。 |
Q4 | 学者合作网络 | 30 | 张三与哪些学者有合作关系?他们共同发表了哪些论文? |
Q5 | 用户个性化问题 | 30 | 我正在研究图神经网络,请推荐相关的经典论文和领域专家。 |
Tab. 1 Examples of long text test question data
问题 | 类别 | 问题数 | 示例问题 |
---|---|---|---|
Q1 | 学者简介 | 30 | 介绍张三教授的研究领域和主要成就。 |
Q2 | 领域代表学者 | 30 | 某领域内的著名学者有哪些?他们的贡献是什么? |
Q3 | 学术成果推荐 | 30 | 请推荐2023年在自然语言处理领域发表的高影响力论文。 |
Q4 | 学者合作网络 | 30 | 张三与哪些学者有合作关系?他们共同发表了哪些论文? |
Q5 | 用户个性化问题 | 30 | 我正在研究图神经网络,请推荐相关的经典论文和领域专家。 |
模型 | 问题 | 精确率/% | 相关性 | 连贯性 | 可读性 |
---|---|---|---|---|---|
GPT-4o | Q1 | 2.30 | 4.43 | 3.73 | 4.70 |
Q2 | 15.20 | 4.30 | 4.00 | 4.67 | |
Q3 | 17.40 | 4.27 | 4.00 | 4.03 | |
Q4 | 1.80 | 4.30 | 4.47 | 4.80 | |
Q5 | 32.40 | 3.83 | 4.60 | 4.83 | |
平均 | 13.80 | 4.23 | 4.16 | 4.61 | |
Llama-3.1-8B | Q1 | 0.00 | 4.70 | 3.73 | 4.30 |
Q2 | 12.60 | 4.13 | 3.80 | 4.80 | |
Q3 | 9.80 | 3.80 | 4.33 | 4.57 | |
Q4 | 3.90 | 4.17 | 3.67 | 3.50 | |
Q5 | 15.80 | 3.80 | 4.80 | 4.10 | |
平均 | 8.40 | 4.12 | 4.07 | 4.25 | |
GLM4-9b | Q1 | 3.10 | 4.27 | 4.80 | 4.83 |
Q2 | 13.90 | 4.67 | 3.63 | 4.13 | |
Q3 | 6.90 | 4.07 | 3.93 | 3.83 | |
Q4 | 4.30 | 3.73 | 4.67 | 3.73 | |
Q5 | 19.30 | 3.80 | 4.53 | 4.77 | |
平均 | 9.50 | 4.11 | 4.31 | 4.26 | |
AMiner AI | Q1 | 94.70 | 4.43 | 4.12 | 4.58 |
Q2 | 72.90 | 4.10 | 3.91 | 4.13 | |
Q3 | 79.80 | 3.89 | 4.29 | 4.14 | |
Q4 | 50.30 | 4.11 | 4.12 | 3.81 | |
Q5 | 60.90 | 3.98 | 4.39 | 4.10 | |
平均 | 71.70 | 4.10 | 4.17 | 4.15 | |
ScholatGPT | Q1 | 78.40 | 3.43 | 4.70 | 4.37 |
Q2 | 91.30 | 4.67 | 3.70 | 4.14 | |
Q3 | 85.10 | 4.71 | 4.70 | 4.10 | |
Q4 | 79.50 | 4.33 | 4.63 | 3.47 | |
Q5 | 81.90 | 3.77 | 3.57 | 4.53 | |
平均 | 83.20 | 4.18 | 4.26 | 4.12 |
Tab. 2 Performance comparison results of different models
模型 | 问题 | 精确率/% | 相关性 | 连贯性 | 可读性 |
---|---|---|---|---|---|
GPT-4o | Q1 | 2.30 | 4.43 | 3.73 | 4.70 |
Q2 | 15.20 | 4.30 | 4.00 | 4.67 | |
Q3 | 17.40 | 4.27 | 4.00 | 4.03 | |
Q4 | 1.80 | 4.30 | 4.47 | 4.80 | |
Q5 | 32.40 | 3.83 | 4.60 | 4.83 | |
平均 | 13.80 | 4.23 | 4.16 | 4.61 | |
Llama-3.1-8B | Q1 | 0.00 | 4.70 | 3.73 | 4.30 |
Q2 | 12.60 | 4.13 | 3.80 | 4.80 | |
Q3 | 9.80 | 3.80 | 4.33 | 4.57 | |
Q4 | 3.90 | 4.17 | 3.67 | 3.50 | |
Q5 | 15.80 | 3.80 | 4.80 | 4.10 | |
平均 | 8.40 | 4.12 | 4.07 | 4.25 | |
GLM4-9b | Q1 | 3.10 | 4.27 | 4.80 | 4.83 |
Q2 | 13.90 | 4.67 | 3.63 | 4.13 | |
Q3 | 6.90 | 4.07 | 3.93 | 3.83 | |
Q4 | 4.30 | 3.73 | 4.67 | 3.73 | |
Q5 | 19.30 | 3.80 | 4.53 | 4.77 | |
平均 | 9.50 | 4.11 | 4.31 | 4.26 | |
AMiner AI | Q1 | 94.70 | 4.43 | 4.12 | 4.58 |
Q2 | 72.90 | 4.10 | 3.91 | 4.13 | |
Q3 | 79.80 | 3.89 | 4.29 | 4.14 | |
Q4 | 50.30 | 4.11 | 4.12 | 3.81 | |
Q5 | 60.90 | 3.98 | 4.39 | 4.10 | |
平均 | 71.70 | 4.10 | 4.17 | 4.15 | |
ScholatGPT | Q1 | 78.40 | 3.43 | 4.70 | 4.37 |
Q2 | 91.30 | 4.67 | 3.70 | 4.14 | |
Q3 | 85.10 | 4.71 | 4.70 | 4.10 | |
Q4 | 79.50 | 4.33 | 4.63 | 3.47 | |
Q5 | 81.90 | 3.77 | 3.57 | 4.53 | |
平均 | 83.20 | 4.18 | 4.26 | 4.12 |
基座模型 | 不同检索方式下的精确率 | ||
---|---|---|---|
none | RAG | KGAG | |
Qwen2.5 | 10.9 | 81.5 | 82.9 |
Qwen2.5(Fine-tuned) | 58.1 | 81.7 | 83.2 |
Tab. 3 Comparison of ablation experiment results
基座模型 | 不同检索方式下的精确率 | ||
---|---|---|---|
none | RAG | KGAG | |
Qwen2.5 | 10.9 | 81.5 | 82.9 |
Qwen2.5(Fine-tuned) | 58.1 | 81.7 | 83.2 |
1 | 徐月梅,胡玲,赵佳艺,等. 大语言模型的技术应用前景与风险挑战[J]. 计算机应用, 2024, 44(6):1655-1662. |
XU Y M, HU L, ZHAO J Y, et al. Technology application prospects and risk challenges of large language models [J]. Journal of Computer Applications, 2024, 44(6): 1655-1662. | |
2 | CHENG D, HUANG S, WEI F. Adapting large language models via reading comprehension [EB/OL]. [2024-09-22]. . |
3 | RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners [EB/OL]. [2023-09-22]. . |
4 | CADEDDU A, CHESSA A, DE LEO V, et al. A comparative analysis of knowledge injection strategies for large language models in the scholarly domain [J]. Engineering Applications of Artificial Intelligence, 2024, 133(Pt B): No.108166. |
5 | PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap [J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7):3580-3599. |
6 | SANMARTIN D. KG-RAG: bridging the gap between knowledge and creativity [EB/OL]. [2024-06-18]. . |
7 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
8 | MIN B, ROSS H, SULEM E, et al. Recent advances in natural language processing via large pre-trained language models: a survey[J]. ACM Computing Surveys, 2024, 56(2): No.30. |
9 | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1877-1901. |
10 | OpenAI. GPT-4 technical report [EB/OL]. [2023-08-28].. |
11 | Meta. Introducing Meta LLaMA 3: the most capable openly available LLM to date [EB/OL]. [2024-09-30]. . |
12 | REN X, ZHOU P, MENG X, et al. PanGu-Σ: towards trillion parameter language model with sparse heterogeneous computing [R/OL]. [2024-05-04]. . |
13 | Team GLM. ChatGLM: a family of large language models from GLM-130B to GLM-4 All Tools [EB/OL]. [2024-08-06]. . |
14 | HU L, LIU Z, ZHAO Z, et al. A survey of knowledge enhanced pre-trained language models [J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(4):1413-1430. |
15 | LIN R, TANG F, HE C, et al. DIRS-KG: a KG-enhanced interactive recommender system based on deep reinforcement learning [J]. World Wide Web, 2023, 26(5):2471-2493. |
16 | FAN W, DING Y, NING L, et al. A survey on RAG meeting LLMs: towards retrieval-augmented large language models [C]// Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 6491-6501. |
17 | RAO J, LIN J. RAMO: retrieval-augmented generation for enhancing MOOCs recommendations [C]// Joint Proceedings of the Human-Centric eXplainable AI in Education and the Leveraging Large Language Models for Next Generation Educational Technologies Workshops Co-located with 17th International Conference on Educational Data Mining. Aachen: CEUR-WS.org, 2024: No.9. |
18 | WU S, İRSOY O, LU S, et al. BloombergGPT: a large language model for finance [EB/OL]. [2024-10-06]. . |
19 | XIONG H, WANG S, ZHU Y, et al. DoctorGLM: fine-tuning your Chinese doctor is not a herculean task [EB/OL]. [2023-07-30]. . |
20 | SINGHAL K, TU T, GOTTWEIS J, et al. Towards expert-level medical question answering with large language models [EB/OL]. [2023-09-06]. . |
21 | HUANG Q, TAO M, ZHANG C, et al. Lawyer LLaMA: enhancing LLMs with legal knowledge [EB/OL]. [2024-05-16].. |
22 | ZHANG Q, CHEN M, BUKHARIN A, et al. AdaLoRA: adaptive budget allocation for parameter-efficient fine-tuning [EB/OL]. [2024-03-10].. |
23 | ZHANG R, HAN J, ZHOU A, et al. LLaMA-Adapter: efficient fine-tuning of language models with zero-init attention [EB/OL]. [2024-10-16]. . |
24 | RAM O, LEVINE Y, DALMEDIGOS I, et al. In-context retrieval-augmented language models [J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1316-1331. |
25 | WANG L, YANG N, HUANG X, et al. Large search model: redefining search stack in the era of LLMs [J]. ACM SIGIR Forum, 2023, 57(2): No.23. |
26 | CHEN H T, XU F, ARORA S, et al. Understanding retrieval augmentation for long-form question answering [EB/OL]. [2024-10-12]. . |
27 | SHI F, CHEN X, MISRA K, et al. Large language models can be easily distracted by irrelevant context [C]// Proceedings of the 40th International Conference on Machine Learning. New York: JMLR.org, 2023: 31210-31227. |
28 | JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514. |
29 | HU S, ZOU L, YU J X, et al. Answering natural language questions by subgraph matching over knowledge graphs [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(5): 824-837. |
30 | LV S, GUO D, XU J, et al. Graph-based reasoning over heterogeneous external knowledge for commonsense question answering [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8449-8456. |
31 | SUN J, XU C, TANG L, et al. Think-on-graph: deep and responsible reasoning of large language model on knowledge graph[EB/OL]. [2024-07-07]. . |
32 | WANG Y, LIPKA N, ROSSI R A, et al. Knowledge graph prompting for multi-document question answering [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 19206-19214. |
33 | ROSSETTI G, STELLA M, CAZABET R, et al. Y Social: an LLM-powered social media digital twin [EB/OL]. [2024-11-09].. |
34 | JIANG J, FERRARA E. Social-LLM: modeling user behavior at scale using language models and social network data [EB/OL]. [2024-05-07]. . |
35 | HAO G, WU J, PAN Q, et al. Quantifying the uncertainty of LLM hallucination spreading in complex adaptive social networks [J]. Scientific Reports, 2024, 14: No.16375. |
36 | STERGIOPOULOS V, TSIANAKA T, TOUSIDOU E. AMiner citation-data preprocessing for recommender systems on scientific publications [C]// Proceedings of the 25th Pan-Hellenic Conference on Informatics. New York: ACM, 2021: 23-27. |
37 | Team Qwen. Qwen2.5 technical report [R/OL]. [2025-02-17]. . |
38 | MITCHELL E, RAFAILOV R, SHARMA A, et al. An emulator for fine-tuning large language models using small language models[EB/OL]. [2024-01-23]. . |
39 | ZENG J, HUANG R, MALIK W, et al. Large language models for social networks: applications, challenges, and solutions [EB/OL]. [2024-01-23].. |
40 | YUAN C, HE Y, LIN R, et al. Graph embedding for scholar recommendation in academic social networks [J]. Frontiers in Physics, 2021, 9: No.768006. |
[1] | Peng CAO, Guangqi WEN, Jinzhu YANG, Gang CHEN, Xinyi LIU, Xuechun JI. Efficient fine-tuning method of large language models for test case generation [J]. Journal of Computer Applications, 2025, 45(3): 725-731. |
[2] | Xiaolin QIN, Xu GU, Dicheng LI, Haiwen XU. Survey and prospect of large language models [J]. Journal of Computer Applications, 2025, 45(3): 685-696. |
[3] | Yuemei XU, Yuqi YE, Xueyi HE. Bias challenges of large language models: identification, evaluation, and mitigation [J]. Journal of Computer Applications, 2025, 45(3): 697-708. |
[4] | Jing HE, Yang SHEN, Runfeng XIE. Recognition and optimization of hallucination phenomena in large language models [J]. Journal of Computer Applications, 2025, 45(3): 709-714. |
[5] | Meng WANG, Daqian ZHANG, Bingyan ZHOU, Qianying MA, Jidong LYU. Fault diagnosis method for train control on-board interface equipment of CTCS-3 based on temporal knowledge graph completion [J]. Journal of Computer Applications, 2025, 45(2): 677-684. |
[6] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. |
[7] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[8] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[9] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[10] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[11] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[12] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[13] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[14] | Yuemei XU, Ling HU, Jiayi ZHAO, Wanze DU, Wenqing WANG. Technology application prospects and risk challenges of large language models [J]. Journal of Computer Applications, 2024, 44(6): 1655-1662. |
[15] | Xiaoyan ZHAO, Yan KUANG, Menghan WANG, Peiyan YUAN. Device-to-device content sharing mechanism based on knowledge graph [J]. Journal of Computer Applications, 2024, 44(4): 995-1001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||