Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2919-2925.DOI: 10.11772/j.issn.1001-9081.2024091312
• Advanced computing • Previous Articles
Xu LI1,2, Zhanwei CHEN1(), Ruibo DONG1, Juan LI1
Received:
2024-09-18
Revised:
2024-10-27
Accepted:
2024-10-31
Online:
2024-11-13
Published:
2025-09-10
Contact:
Zhanwei CHEN
About author:
LI Xu, born in 1986, Ph. D., associate professor. His research interests include rough set, granular computing, machine learning.Supported by:
通讯作者:
陈战伟
作者简介:
李旭(1986—),男,新疆乌鲁木齐人,副教授,博士,主要研究方向:粗糙集、粒计算、机器学习基金资助:
CLC Number:
Xu LI, Zhanwei CHEN, Ruibo DONG, Juan LI. Attribute reduction of fuzzy relation decision systems with two universes[J]. Journal of Computer Applications, 2025, 45(9): 2919-2925.
李旭, 陈战伟, 董瑞博, 李娟. 双论域模糊关系决策系统的属性约简[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2919-2925.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091312
数据集 | 对象数 | 属性数 | 类数 |
---|---|---|---|
Breast Cancer | 199 | 9 | 2 |
Glass | 214 | 8 | 4 |
Blood Transfusion | 748 | 5 | 4 |
Iranian | 3 150 | 14 | 2 |
Wine | 4 898 | 12 | 11 |
Tab. 1 Dataset description
数据集 | 对象数 | 属性数 | 类数 |
---|---|---|---|
Breast Cancer | 199 | 9 | 2 |
Glass | 214 | 8 | 4 |
Blood Transfusion | 748 | 5 | 4 |
Iranian | 3 150 | 14 | 2 |
Wine | 4 898 | 12 | 11 |
数据集 | 原属性数 | 约简后属性数 |
---|---|---|
Breast Cancer | 9 | 4 |
Glass | 8 | 3 |
Blood Transfusion | 5 | 2 |
Iranian | 14 | 3 |
Wine | 12 | 4 |
Tab. 2 Comparison of attribute numbers before and after attribute reduction
数据集 | 原属性数 | 约简后属性数 |
---|---|---|
Breast Cancer | 9 | 4 |
Glass | 8 | 3 |
Blood Transfusion | 5 | 2 |
Iranian | 14 | 3 |
Wine | 12 | 4 |
数据集 | 训练集比例 | SVM | KNN | RF | |||
---|---|---|---|---|---|---|---|
O.D. | URFT | O.D. | URFT | O.D. | URFT | ||
Breast Cancer | 60 | 59.57 | 59.58 | 55.32 | 53.33 | 65.96 | 65.96 |
70 | 62.86 | 62.86 | 48.59 | 48.58 | 65.71 | 71.43 | |
80 | 83.33 | 83.33 | 41.67 | 41.67 | 87.50 | 79.17 | |
90 | 83.33 | 83.33 | 50.00 | 50.00 | 66.67 | 66.67 | |
95 | 83.33 | 83.33 | 33.33 | 33.33 | 83.33 | 83.33 | |
Glass | 60 | 98.07 | 98.07 | 97.05 | 97.05 | 98.03 | 98.17 |
70 | 98.12 | 98.13 | 97.24 | 97.25 | 98.23 | 98.25 | |
80 | 98.02 | 98.02 | 97.37 | 97.37 | 98.24 | 98.30 | |
90 | 97.77 | 97.77 | 97.49 | 97.49 | 98.16 | 98.16 | |
95 | 98.21 | 98.21 | 98.10 | 98.10 | 98.44 | 98.55 | |
Blood Transfusion | 60 | 76.25 | 76.25 | 71.57 | 71.57 | 69.23 | 69.57 |
70 | 79.56 | 79.56 | 73.33 | 73.33 | 70.22 | 75.11 | |
80 | 78.00 | 78.00 | 69.33 | 69.33 | 65.33 | 68.67 | |
90 | 84.00 | 84.00 | 78.67 | 78.67 | 78.67 | 78.67 | |
95 | 84.21 | 84.21 | 76.32 | 76.32 | 76.32 | 76.32 | |
Iranian | 60 | 99.88 | 99.91 | 98.33 | 98.33 | 98.33 | 99.35 |
70 | 99.89 | 99.98 | 100.00 | 100.00 | 100.00 | 100.00 | |
80 | 99.99 | 99.99 | 100.00 | 100.00 | 100.00 | 100.00 | |
90 | 100.00 | 100.00 | 99.86 | 99.99 | 100.00 | 100.00 | |
95 | 100.00 | 100.00 | 99.89 | 100.00 | 100.00 | 100.00 | |
Wine | 60 | 56.41 | 55.47 | 49.22 | 51.56 | 65.31 | 64.84 |
70 | 56.25 | 55.42 | 48.54 | 50.83 | 67.50 | 67.92 | |
80 | 56.87 | 56.25 | 45.62 | 48.75 | 67.81 | 65.31 | |
90 | 58.75 | 57.50 | 47.50 | 48.13 | 67.50 | 67.50 | |
95 | 61.25 | 58.75 | 48.75 | 47.50 | 61.25 | 62.50 |
Tab. 3 Comparison results of classification accuracy between original dataset and URFT dataset
数据集 | 训练集比例 | SVM | KNN | RF | |||
---|---|---|---|---|---|---|---|
O.D. | URFT | O.D. | URFT | O.D. | URFT | ||
Breast Cancer | 60 | 59.57 | 59.58 | 55.32 | 53.33 | 65.96 | 65.96 |
70 | 62.86 | 62.86 | 48.59 | 48.58 | 65.71 | 71.43 | |
80 | 83.33 | 83.33 | 41.67 | 41.67 | 87.50 | 79.17 | |
90 | 83.33 | 83.33 | 50.00 | 50.00 | 66.67 | 66.67 | |
95 | 83.33 | 83.33 | 33.33 | 33.33 | 83.33 | 83.33 | |
Glass | 60 | 98.07 | 98.07 | 97.05 | 97.05 | 98.03 | 98.17 |
70 | 98.12 | 98.13 | 97.24 | 97.25 | 98.23 | 98.25 | |
80 | 98.02 | 98.02 | 97.37 | 97.37 | 98.24 | 98.30 | |
90 | 97.77 | 97.77 | 97.49 | 97.49 | 98.16 | 98.16 | |
95 | 98.21 | 98.21 | 98.10 | 98.10 | 98.44 | 98.55 | |
Blood Transfusion | 60 | 76.25 | 76.25 | 71.57 | 71.57 | 69.23 | 69.57 |
70 | 79.56 | 79.56 | 73.33 | 73.33 | 70.22 | 75.11 | |
80 | 78.00 | 78.00 | 69.33 | 69.33 | 65.33 | 68.67 | |
90 | 84.00 | 84.00 | 78.67 | 78.67 | 78.67 | 78.67 | |
95 | 84.21 | 84.21 | 76.32 | 76.32 | 76.32 | 76.32 | |
Iranian | 60 | 99.88 | 99.91 | 98.33 | 98.33 | 98.33 | 99.35 |
70 | 99.89 | 99.98 | 100.00 | 100.00 | 100.00 | 100.00 | |
80 | 99.99 | 99.99 | 100.00 | 100.00 | 100.00 | 100.00 | |
90 | 100.00 | 100.00 | 99.86 | 99.99 | 100.00 | 100.00 | |
95 | 100.00 | 100.00 | 99.89 | 100.00 | 100.00 | 100.00 | |
Wine | 60 | 56.41 | 55.47 | 49.22 | 51.56 | 65.31 | 64.84 |
70 | 56.25 | 55.42 | 48.54 | 50.83 | 67.50 | 67.92 | |
80 | 56.87 | 56.25 | 45.62 | 48.75 | 67.81 | 65.31 | |
90 | 58.75 | 57.50 | 47.50 | 48.13 | 67.50 | 67.50 | |
95 | 61.25 | 58.75 | 48.75 | 47.50 | 61.25 | 62.50 |
[1] | PAWLAK Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982, 11: 341-356. |
[2] | PAWLAK Z, WONG S K M, ZIARKO W. Rough sets: probabilistic versus deterministic approach [J]. International Journal of Man-Machine Studies, 1988, 29(1): 81-95. |
[3] | LIN G, LIANG J, QIAN Y. An information fusion approach by combining multigranulation rough sets and evidence theory [J]. Information Sciences, 2015, 314:184-199. |
[4] | TAN A, WU W Z, TAO Y. A unified framework for characterizing rough sets with evidence theory in various approximation spaces [J]. Information Sciences, 2018, 454/455: 144-160. |
[5] | JI X, LI J, YAO S, et al. Attribute reduction based on fusion information entropy [J]. International Journal of Approximate Reasoning, 2023, 160: No.108949. |
[6] | ZHAO J, LIANG J M, DONG Z N, et al. Accelerating information entropy-based feature selection using rough set theory with classified nested equivalence classes [J]. Pattern Recognition, 2020, 107: No.107517. |
[7] | XU W, YUAN Z, LIU Z. Feature selection for unbalanced distribution hybrid data based on k-nearest neighborhood rough set[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(1):229-243. |
[8] | 王超,罗可. 不完备信息系统中基于限制容差关系的属性约简方法[J]. 计算机应用, 2011, 31(12):3236-3239. |
WANG C, LUO K. Attributes reduction method based on limited tolerance relation in incomplete information system [J]. Journal of Computer Applications, 2011, 31(12):3236-3239. | |
[9] | 王国胤,姚一豫,于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7):1229-1246. |
WANG G Y, YAO Y Y, YU H. A survey on rough set theory and applications [J]. Chinese Journal of Computers, 2009, 32(7):1229-1246. | |
[10] | 王映龙,华佳佳,杨珺,等. 基于相似关系的集值决策信息系统的属性约简[J]. 计算机工程与应用, 2018, 54(5):122-126. |
WANG Y L, HUA J J, YANG J, et al. Attribute reduction based on similar relation in set-valued decision information system [J]. Computer Engineering and Applications, 2018, 54(5): 122-126. | |
[11] | 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8):9-16, 24. |
LI T J, HUANG J W, WU W Z. Attribute reduction of incomplete contexts based on similarity relations [J]. Journal of Shandong University (Natural Science), 2018, 53(8):9-16, 24. | |
[12] | 毕盛,翟岩慧,李德玉. 保持决策蕴涵不变的决策背景属性约简[J]. 计算机科学, 2024, 51(7):89-95. |
BI S, ZHAI Y H, LI D Y. Decision implication preserving attribute reduction in decision context [J]. Computer Science, 2024, 51(7):89-95. | |
[13] | 朱康,吴伟志,刘梦欣. 协调广义多尺度序模糊决策系统的最优尺度组合与属性约简[J]. 模式识别与人工智能, 2024, 37(6):538-556. |
ZHU K, WU W Z, LIU M X. Optimal scale combinations and attribute reduction for consistent generalized multi-scale ordered fuzzy decision systems [J]. Pattern Recognition and Artificial Intelligence, 2024, 37(6):538-556. | |
[14] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 山东大学学报(理学版), 2024, 59(5):82-89. |
FANG F Q, WU W Z. Knowledge reduction in decision set-valued systems [J]. Journal of Shandong University (Natural Science), 2024, 59(5):82-89. | |
[15] | 李旭,荣梓景,任艳. 带权决策表的属性约简[J]. 计算机工程与应用, 2020, 56(12):54-59. |
LI X, RONG Z J, REN Y. Attribute reduction on weighted decision table [J]. Computer Engineering and Applications, 2020, 56(12):54-59. | |
[16] | LIU G. Rough set approaches in knowledge structures [J]. International Journal of Approximate Reasoning, 2021, 138:78-88. |
[17] | LIU G. Assignment reduction of relation DecisionSystems [C]// Proceedings of the 2017 International Joint Conference on Rough Sets, LNCS 10313. Cham: Springer, 2017: 384-391. |
[18] | LIU G, HUA Z, CHEN Z. A general reduction algorithm for relation decision systems and its applications [J]. Knowledge-Based Systems, 2017, 119: 87-93. |
[19] | 李旭,荣梓景,阮晓曦. 关系决策系统中相对不可区分和区分关系的约简[J]. 计算机应用, 2019, 39(10):2852-2858. |
LI X, RONG Z J, RUAN X X. Attribute reduction of relative indiscernibility relation and discernibility relation in relation decision system [J]. Journal of Computer Applications, 2019, 39(10):2852-2858. | |
[20] | YUAN Z, CHEN H, LI T, et al. Unsupervised attribute reduction for mixed data based on fuzzy rough sets [J]. Information Sciences, 2021, 572: 67-87. |
[21] | WANG C, HUANG Y, SHAO M, et al. Fuzzy rough set-based attribute reduction using distance measures [J]. Knowledge-Based Systems, 2019, 164: 205-212. |
[22] | TSANG E C C, CHEN D G, YEUNG D S, et al. Attributes reduction using fuzzy rough sets [J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5): 1130-1141. |
[23] | 徐伟华,孔子默,陈曜琦. 含属性加权模糊序决策信息系统的近似约简[J]. 南京大学学报(自然科学), 2022, 58(2):255-263. |
XU W H, KONG Z M, CHEN Y Q. Approximate reduction of fuzzy ordered decision information system with attribute weighting [J]. Journal of Nanjing University (Natural Science), 2022, 58(2):255-263. | |
[24] | QIAN W, SHU W. Attribute reduction in incomplete ordered information systems with fuzzy decision [J]. Applied Soft Computing, 2018, 73: 242-253. |
[25] | FENG Y, HUA Z, LIU G. Partial reduction algorithms for fuzzy relation systems [J]. Knowledge-Based Systems, 2020, 188: No.105047. |
[26] | DAI J, HU H, WU W Z, et al. Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2174-2187. |
[27] | HU M, TSANG E C C, GUO Y, et al. Fast and robust attribute reduction based on the separability in fuzzy decision systems [J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5559-5572. |
[28] | LIU G, HUA Z. A general reduction method for fuzzy objective relation systems [J]. International Journal of Approximate Reasoning, 2019, 105: 241-251. |
[29] | YAO Y Y, WONG S K M, WANG L S. A non-numeric approach to uncertain reasoning [J]. International Journal of General Systems, 1995, 23(4): 343-359. |
[30] | PEI D, XU Z B. Rough set models on two universes [J]. International Journal of General Systems, 2004, 33(5): 569-581. |
[31] | EL-MONSEF M E ABD, EL-GAYAR M A, AQEEL R M. A comparison of three types of rough fuzzy sets based on two universal sets [J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 343-353. |
[32] | 邓切,张贤勇,杨霁琳,等. 基于双论域笛卡尔积的粗糙熵与知识粒度[J]. 模式识别与人工智能, 2019, 32(11): 975-986. |
DENG Q, ZHANG X Y, YANG J L, et al. Rough entropy and knowledge granularity based on Cartesian product of double universes [J]. Pattern Recognition and Artificial Intelligence, 2019, 32(11):975-986. | |
[33] | MA W, SUN B. Probabilistic rough set over two universes and rough entropy [J]. International Journal of Approximate Reasoning, 2012, 53(4): 608-619. |
[34] | YANG H L, LIAO X, WANG S, et al. Fuzzy probabilistic rough set model on two universes and its applications [J]. International Journal of Approximate Reasoning, 2013, 54(9): 1410-1420. |
[1] | Yuhao TANG, Dezhong PENG, Zhong YUAN. Fuzzy multi-granularity anomaly detection for incomplete mixed data [J]. Journal of Computer Applications, 2024, 44(10): 3097-3104. |
[2] | Yuanjiang LI, Jinsheng QUAN, Yangyi TAN, Tian YANG. Attribute reduction for high-dimensional data based on bi-view of similarity and difference [J]. Journal of Computer Applications, 2023, 43(5): 1467-1472. |
[3] | Qing WANG, Xiuwei GAO, Yehai XIE, Guilong LIU. Inner product reduction in formal context [J]. Journal of Computer Applications, 2023, 43(4): 1079-1085. |
[4] | Yan LI, Bin FAN, Jie GUO. Attribute reduction algorithm based on cluster granulation and divergence among clusters [J]. Journal of Computer Applications, 2022, 42(9): 2701-2712. |
[5] | Meng KANG, Zuqiang MENG. Efficient attribute reduction algorithm based on local conditional discernibility [J]. Journal of Computer Applications, 2022, 42(2): 449-456. |
[6] | Chao LIU, Lei WANG, Wen YANG, Qiangqiang ZHONG, Min LI. Incremental attribute reduction method for set-valued decision information system with variable attribute sets [J]. Journal of Computer Applications, 2022, 42(2): 463-468. |
[7] | WANG Xiaorong, ZHANG Yuzhao, ZHANG Zhenjiang. Selection of express freight transportation schemes based on rough set over two universes [J]. Journal of Computer Applications, 2021, 41(5): 1500-1505. |
[8] | LI Leitao, ZHANG Nan, TONG Xiangrong, YUE Xiaodong. β-distribution reduction based on discernibility matrix in interval-valued decision systems [J]. Journal of Computer Applications, 2021, 41(4): 1084-1092. |
[9] | WANG Lei. Network intrusion detection method based on improved rough set attribute reduction and K-means clustering [J]. Journal of Computer Applications, 2020, 40(7): 1996-2002. |
[10] | ZHANG Wu, CHEN Hongmei. Hyperspectral band selection based on multi-kernelized fuzzy rough set and grasshopper optimization algorithm [J]. Journal of Computer Applications, 2020, 40(5): 1425-1430. |
[11] | Xiajie ZHANG, Jinghua ZHU, Yang CHEN. Distributed rough set attribute reduction algorithm under Spark [J]. Journal of Computer Applications, 2020, 40(2): 518-523. |
[12] | OU Binli, ZHONG Xiaru, DAI Jianhua, YANG Tian. Intrusion detection method based on variable precision covering rough set [J]. Journal of Computer Applications, 2020, 40(12): 3465-3470. |
[13] | LI Ziying, SHI Zhenguo. Scheduling method for big data tasks [J]. Journal of Computer Applications, 2020, 40(10): 2923-2928. |
[14] | ZHANG Wu, CHEN Hongmei. Hyperspectral band selection algorithm based on kernelized fuzzy rough set [J]. Journal of Computer Applications, 2020, 40(1): 258-263. |
[15] | BAO Di, ZHANG Nan, TONG Xiangrong, YUE Xiaodong. Incremental attribute reduction algorithm of positive region in interval-valued decision tables [J]. Journal of Computer Applications, 2019, 39(8): 2288-2296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||