Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2180-2187.DOI: 10.11772/j.issn.1001-9081.2024070951
• Artificial intelligence • Previous Articles Next Articles
Danyang CHEN, Changlun ZHANG()
Received:
2024-07-05
Revised:
2024-10-14
Accepted:
2024-10-16
Online:
2025-07-10
Published:
2025-07-10
Contact:
Changlun ZHANG
About author:
CHEN Danyang, born in 1999, M. S. candidate. Her research interests include graph neural network.Supported by:
通讯作者:
张长伦
作者简介:
陈丹阳(1999—),女,山东临沂人,硕士研究生,主要研究方向:图神经网络基金资助:
CLC Number:
Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model[J]. Journal of Computer Applications, 2025, 45(7): 2180-2187.
陈丹阳, 张长伦. 多尺度去相关的图卷积网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2180-2187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070951
类型 | 数据集 | 节点数 | 边数 | 特征数 | 类别数 |
---|---|---|---|---|---|
同质图 | Cora | 2 708 | 5 429 | 1 433 | 7 |
CiteSeer | 3 327 | 4 732 | 3 703 | 6 | |
PubMed | 19 717 | 44 338 | 500 | 3 | |
异质图 | Chameleon | 2 277 | 36 101 | 2 325 | 4 |
Texas | 183 | 309 | 1 703 | 5 | |
Cornell | 183 | 298 | 1 703 | 5 | |
Wisconsin | 251 | 499 | 1 703 | 5 |
Tab. 1 Datasets used in experiments
类型 | 数据集 | 节点数 | 边数 | 特征数 | 类别数 |
---|---|---|---|---|---|
同质图 | Cora | 2 708 | 5 429 | 1 433 | 7 |
CiteSeer | 3 327 | 4 732 | 3 703 | 6 | |
PubMed | 19 717 | 44 338 | 500 | 3 | |
异质图 | Chameleon | 2 277 | 36 101 | 2 325 | 4 |
Texas | 183 | 309 | 1 703 | 5 | |
Cornell | 183 | 298 | 1 703 | 5 | |
Wisconsin | 251 | 499 | 1 703 | 5 |
模型 | 层数 | 准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
Cora | CiteSeer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | ||
GCN | 2 | 87.73 | 77.67 | 86.11 | 64.19 | 51.85 | 64.67 | 57.03 |
4 | 86.30 | 73.39 | 86.12 | 62.16 | 50.93 | 53.33 | 60.88 | |
8 | 83.44 | 24.55 | 73.10 | 59.46 | 52.31 | 53.33 | 50.11 | |
16 | 30.86 | 24.32 | 41.26 | 60.36 | 52.78 | 52.00 | 44.01 | |
32 | 31.04 | 23.27 | 41.33 | 57.21 | 52.78 | 51.67 | 44.45 | |
GAT | 2 | 86.90 | 76.13 | 85.34 | 57.66 | 46.76 | 62.33 | 64.56 |
4 | 88.01 | 73.20 | 84.99 | 55.41 | 43.52 | 56.67 | 59.18 | |
8 | 76.66 | 21.02 | 39.93 | 54.05 | 44.44 | 47.67 | 22.86 | |
16 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
32 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
Decorr | 2 | 87.78 | 77.70 | 84.80 | 64.86 | 50.69 | 61.00 | 57.47 |
4 | 86.76 | 74.66 | 85.98 | 63.51 | 50.69 | 50.50 | 60.99 | |
8 | 85.56 | 73.05 | 82.25 | 56.76 | 50.00 | 55.00 | 50.44 | |
16 | 41.14 | 23.05 | 71.44 | 57.43 | 45.83 | 56.00 | 44.07 | |
32 | 42.85 | 22.90 | 57.07 | 54.05 | 44.44 | 52.00 | 39.34 | |
Deprop | 2 | 87.22 | 74.06 | 87.79 | 71.62 | 72.01 | 65.00 | 64.18 |
4 | 87.45 | 72.15 | 83.76 | 74.32 | 68.06 | 60.00 | 66.26 | |
8 | 86.72 | 74.02 | 41.30 | 68.92 | 58.33 | 65.50 | 57.25 | |
16 | 81.50 | 69.44 | 30.38 | 60.81 | 50.00 | 53.00 | 52.86 | |
32 | 57.29 | 31.83 | 39.93 | 70.27 | 48.61 | 56.00 | 44.84 | |
Multi-Deprop | 2 | 87.27 | 74.96 | 89.59 | 72.97 | 72.22 | 66.00 | 65.71 |
4 | 88.15 | 72.07 | 87.12 | 75.68 | 65.28 | 61.00 | 66.81 | |
8 | 87.92 | 76.80 | 84.90 | 70.27 | 62.50 | 63.00 | 61.65 | |
16 | 85.29 | 73.54 | 76.95 | 66.22 | 58.33 | 65.00 | 53.63 | |
32 | 64.90 | 48.61 | 63.37 | 62.16 | 51.39 | 54.00 | 50.88 |
Tab. 2 Node classification accuracies with different layers
模型 | 层数 | 准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
Cora | CiteSeer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | ||
GCN | 2 | 87.73 | 77.67 | 86.11 | 64.19 | 51.85 | 64.67 | 57.03 |
4 | 86.30 | 73.39 | 86.12 | 62.16 | 50.93 | 53.33 | 60.88 | |
8 | 83.44 | 24.55 | 73.10 | 59.46 | 52.31 | 53.33 | 50.11 | |
16 | 30.86 | 24.32 | 41.26 | 60.36 | 52.78 | 52.00 | 44.01 | |
32 | 31.04 | 23.27 | 41.33 | 57.21 | 52.78 | 51.67 | 44.45 | |
GAT | 2 | 86.90 | 76.13 | 85.34 | 57.66 | 46.76 | 62.33 | 64.56 |
4 | 88.01 | 73.20 | 84.99 | 55.41 | 43.52 | 56.67 | 59.18 | |
8 | 76.66 | 21.02 | 39.93 | 54.05 | 44.44 | 47.67 | 22.86 | |
16 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
32 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
Decorr | 2 | 87.78 | 77.70 | 84.80 | 64.86 | 50.69 | 61.00 | 57.47 |
4 | 86.76 | 74.66 | 85.98 | 63.51 | 50.69 | 50.50 | 60.99 | |
8 | 85.56 | 73.05 | 82.25 | 56.76 | 50.00 | 55.00 | 50.44 | |
16 | 41.14 | 23.05 | 71.44 | 57.43 | 45.83 | 56.00 | 44.07 | |
32 | 42.85 | 22.90 | 57.07 | 54.05 | 44.44 | 52.00 | 39.34 | |
Deprop | 2 | 87.22 | 74.06 | 87.79 | 71.62 | 72.01 | 65.00 | 64.18 |
4 | 87.45 | 72.15 | 83.76 | 74.32 | 68.06 | 60.00 | 66.26 | |
8 | 86.72 | 74.02 | 41.30 | 68.92 | 58.33 | 65.50 | 57.25 | |
16 | 81.50 | 69.44 | 30.38 | 60.81 | 50.00 | 53.00 | 52.86 | |
32 | 57.29 | 31.83 | 39.93 | 70.27 | 48.61 | 56.00 | 44.84 | |
Multi-Deprop | 2 | 87.27 | 74.96 | 89.59 | 72.97 | 72.22 | 66.00 | 65.71 |
4 | 88.15 | 72.07 | 87.12 | 75.68 | 65.28 | 61.00 | 66.81 | |
8 | 87.92 | 76.80 | 84.90 | 70.27 | 62.50 | 63.00 | 61.65 | |
16 | 85.29 | 73.54 | 76.95 | 66.22 | 58.33 | 65.00 | 53.63 | |
32 | 64.90 | 48.61 | 63.37 | 62.16 | 51.39 | 54.00 | 50.88 |
模型 | Cora | Citeseer | Pubmed | Texas | Cornell | Wisconsin | Chameleon |
---|---|---|---|---|---|---|---|
GCN | 87.73(2) | 77.67(2) | 86.12(4) | 64.19(2) | 52.78(16) | 64.67(2) | 60.88(4) |
GAT | 88.01(4) | 76.13(2) | 85.34(2) | 57.66(2) | 46.76(2) | 62.33(2) | 64.56(2) |
Decorr | 87.78(2) | 77.70(2) | 85.98(4) | 64.86(2) | 50.69(2) | 61.00(2) | 60.99(4) |
Deprop | 87.45(4) | 74.06(2) | 87.79(2) | 74.32(4) | 72.01(2) | 65.50(16) | 66.26(4) |
Multi_Deprop | 88.15(4) | 76.80(8) | 89.59(2) | 75.68(4) | 72.22(2) | 66.00(2) | 66.81(4) |
Tab. 3 Node classification accuracies of each models
模型 | Cora | Citeseer | Pubmed | Texas | Cornell | Wisconsin | Chameleon |
---|---|---|---|---|---|---|---|
GCN | 87.73(2) | 77.67(2) | 86.12(4) | 64.19(2) | 52.78(16) | 64.67(2) | 60.88(4) |
GAT | 88.01(4) | 76.13(2) | 85.34(2) | 57.66(2) | 46.76(2) | 62.33(2) | 64.56(2) |
Decorr | 87.78(2) | 77.70(2) | 85.98(4) | 64.86(2) | 50.69(2) | 61.00(2) | 60.99(4) |
Deprop | 87.45(4) | 74.06(2) | 87.79(2) | 74.32(4) | 72.01(2) | 65.50(16) | 66.26(4) |
Multi_Deprop | 88.15(4) | 76.80(8) | 89.59(2) | 75.68(4) | 72.22(2) | 66.00(2) | 66.81(4) |
[1] | TAKAHASHI T. Indirect adversarial attacks via poisoning neighbors for graph convolutional networks [C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway: IEEE, 2019: 1395-1400. |
[2] | ABBOUD R, CEYLAN İ İ, GROHE M, et al. The surprising power of graph neural networks with random node initialization [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2112-2118. |
[3] | MIN S, GAO Z, PENG J, et al. STGSN — a spatial-temporal graph neural network framework for time-evolving social networks [J]. Knowledge-Based Systems, 2021, 214: No.106746. |
[4] | JIN D, YU Z, JIAO P, et al. A survey of community detection approaches: from statistical modeling to deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1149-1170. |
[5] | JIANG W, LUO J. Graph neural network for traffic forecasting: a survey [J]. Expert Systems with Applications, 2022, 207: No.117921. |
[6] | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
[7] | GAO C, WANG X, HE X, et al. Graph neural networks for recommender system [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1623-1625. |
[8] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
[9] | LI Q, HAN Z, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3538-3545. |
[10] | ZHAO L, AKOGLU L. PairNorm: tackling oversmoothing in GNNs [EB/OL]. [2024-06-09]. . |
[11] | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
[12] | JIN W, LIU X, MA Y, et al. Feature overcorrelation in deep graph neural networks: a new perspective [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 709-719. |
[13] | CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. |
[14] | GUO Y, WEI Z. Clenshaw graph neural networks [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 614-625. |
[15] | GAO Z, BHATTACHARYA S, ZHANG L, et al. Training robust graph neural networks with topology adaptive edge dropping [EB/OL]. [2024-06-09]. . |
[16] | GUO K, ZHOU K, HU X, et al. Orthogonal graph neural networks [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 3996-4004. |
[17] | LIU H, HAN H, JIN W, et al. Enhancing graph representations learning with decorrelated propagation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 1466-1476. |
[18] | XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5453-5462. |
[19] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2024-06-09]. . |
[20] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2024-06-09]. . |
[21] | TAUBIN G. A signal processing approach to fair surface design [C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 351-358. |
[22] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[23] | WU X, AJORLOU A, WU Z, et al. Demystifying oversmoothing in attention-based graph neural networks [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 35084-35106. |
[24] | COGSWELL M, AHMED F, GIRSHICK R, et al. Reducing overfitting in deep networks by decorrelating representations [EB/OL]. [2024-06-09]. . |
[25] | RODRÍGUEZ P, GONZÀLEZ J, CUCURULL G, et al. Regularizing CNNs with locally constrained decorrelations [EB/OL]. [2024-06-09]. . |
[26] | GUO X, WANG Y, DU T, et al. ContraNorm: a contrastive learning perspective on oversmoothing and beyond [EB/OL]. [2024-06-09]. . |
[27] | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. |
[28] | BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient [M]// Noise reduction in speech processing, STSP 2. Berlin: Springer, 2009: 1-4. |
[29] | SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data [J]. AI Magazine, 2008, 29(3): 93-106. |
[30] | ROZEMBERCZKI B, ALLEN C, SARKAR R. Multi-scale attributed node embedding [J]. Journal of Complex Network, 2021, 9(2): No.cnab014. |
[31] | PEI H, WEI B, CHANG K C C, et al. Geom-GCN: geometric graph convolutional networks [EB/OL]. [2024-06-09]. . |
[32] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
[1] | Yuyang SUN, Minjie ZHANG, Jie HU. Zero-shot dialogue state tracking domain transfer model based on semantic prefix-tuning [J]. Journal of Computer Applications, 2025, 45(7): 2221-2228. |
[2] | Peiyu JIANG, Yongguang WANG, Yating REN, Shuochen LI, Huobin TAN. Object detection uncertainty measurement scheme based on guide to the expression of uncertainty in measurement [J]. Journal of Computer Applications, 2025, 45(7): 2162-2168. |
[3] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
[4] | Longbo YAN, Wentao MAO, Zhihong ZHONG, Lilin FAN. Robust unsupervised multi-task anomaly detection method for defect diagnosis of urban drainage pipe network [J]. Journal of Computer Applications, 2025, 45(6): 1833-1840. |
[5] | XIONG Qianlong, QIN Jin. Neural network architecture search algorithm guided by hybrid heuristic information [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | JIANG Yongwei, CHEN Xiaoqing, FU Linjie. Medical image deformable registration model with high frequency holding based on spectrum decomposition [J]. Journal of Computer Applications, 0, (): 0-0. |
[7] | . Regional electricity price forecasting method based on Mamba model [J]. Journal of Computer Applications, 0, (): 0-0. |
[8] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[9] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[10] | . UAV target detection algorithm based on improved YOLOv11 [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | . Variable-length time series forecasting model based on segmented iteration [J]. Journal of Computer Applications, 0, (): 0-0. |
[12] | . Spatial attention-based air temperature forecasting correction network [J]. Journal of Computer Applications, 0, (): 0-0. |
[13] | . Feature extraction method of flight pitch operation based on QAR data [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | Qingqing ZHAO, Bin HU. Moving pedestrian detection neural network with invariant global sparse contour point representation [J]. Journal of Computer Applications, 2025, 45(4): 1271-1284. |
[15] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||