Journal of Computer Applications

    Next Articles

Fine-grained Chinese herbal medicine image classification based on feature fusion and channel information compensation

  

  • Received:2025-06-09 Revised:2025-07-10 Accepted:2025-07-18 Online:2025-08-01 Published:2025-08-01

基于特征融合和通道信息补偿的中草药细粒度图像分类

刘馨瑶1,梁军1,龙嘉濠1,颜仁梁2   

  1. 1. 华南师范大学 人工智能学院
    2. 广东食品药品职业学院 中药学院
  • 通讯作者: 梁军
  • 基金资助:
    广东省基础与应用基础研究基金;佛山市高等教育高层次人才项目;广东食品药品职业学院校级质量工程;广东食品药品职业学院校级自然科学项目

Abstract: In the field of fine-grained image classification of traditional Chinese medicine, the lack of a comprehensive and balanced dataset has been a major obstacle. To advance research in fine-grained image recognition of Chinese herbs, the Herb-150 fine-grained Chinese herb dataset was constructed. To address the issue of deep neural networks easily losing discriminative detailed features in this task, a fine-grained feature-enhanced CHMRN(Chinese herbal medicine recognition Network) was proposed. This network introduces a top-down feature fusion module that integrates multi-scale semantic information, thereby capturing comprehensive contextual features. Additionally, a bottom-up channel information compensation module is designed to enhance the expressive power of fine-grained features, ensuring the accurate capture of subtle differences between traditional Chinese medicine categories. Experimental results show that the CHMRN achieves an accuracy rate of 93.91% on the Herb-150 dataset. Compared to fine-grained image classification models CMAL-Net and PIM,?it achieves an improvement of over 3%, while also outperforming models such as IELT, SR-GNN, I2-HOFI, and SIM-OFE. This significant improvement highlights the effectiveness of the proposed architecture in fine-grained classification tasks. The CHMRN not only improves the accuracy of traditional Chinese medicine identification, but also provides valuable references for similar fine-grained image classification applications.

Key words: Deep learning, Fine-grained image classification, Traditional Chinese medicine, Feature extraction, Feature fusion

摘要: 在传统中草药细粒度图像分类领域,缺乏一个全面且平衡的数据集。为推进中草药细粒度图像识别研究,构建了Herb-150细粒度中草药数据集。针对该任务中深层神经网络易丢失判别性细节特征的问题,提出了细粒度特征增强的CHMRN网络,通过引入自顶向下的特征融合模块整合多尺度语义信息,从而捕捉全面的上下文特征;同时,设计了自底向上的通道信息补偿模块,以增强细粒度特征的表达能力,确保能够准确捕捉中药类别之间的细微差异。实验结果表明,CHMRN网络在Herb-150数据集上的准确率达到了93.91%,相比细粒度图像分类模型CMAL-Net、PIM提升了超过3%,同时优于IELT、SR-GNN、I2-HOFI、SIM-OFE模型,验证了所提架构在细粒度分类任务中的有效性。CHMRN网络不仅提高了传统中药识别的准确性,还能为类似的细粒度图像分类应用提供参考。

关键词: 关键词: 深度学习, 细粒度图像分类, 中草药, 特征提取, 特征融合

CLC Number: