Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1573-1581.DOI: 10.11772/j.issn.1001-9081.2024050610
• Cyber security • Previous Articles
Xueying LI1, Kun YANG2, Guoqing TU1, Shubo LIU2()
Received:
2024-05-14
Revised:
2024-07-08
Accepted:
2024-08-16
Online:
2024-09-04
Published:
2025-05-10
Contact:
Shubo LIU
About author:
LI Xueying, born in 2001, M. S. candidate. Her research interests include time series data, adversarial attack, machine learning, artificial intelligence security.Supported by:
通讯作者:
刘树波
作者简介:
李雪莹(2001—),女,山东莘县人,硕士研究生,主要研究方向:时序数据、对抗攻击、机器学习、人工智能安全基金资助:
CLC Number:
Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation[J]. Journal of Computer Applications, 2025, 45(5): 1573-1581.
李雪莹, 杨琨, 涂国庆, 刘树波. 基于局部增强的时序数据对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1573-1581.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050610
数据集 | 数据长度 | AdvGAN | 本文方法 | FGSM |
---|---|---|---|---|
Car | 577 | 0.011 0 | 0.040 0 | 0.045 |
ECG5000 | 140 | 0.032 0 | 0.028 0 | 0.067 |
FordB | 500 | 0.008 6 | 0.010 0 | 0.045 |
Lightning2 | 637 | 0.011 0 | 0.044 0 | 0.056 |
Lightning7 | 319 | 0.006 8 | 0.012 5 | 0.020 |
Plane | 144 | 0.004 2 | 0.009 0 | 0.080 |
MoteStrain | 84 | 0.011 0 | 0.055 0 | 0.120 |
Trace | 275 | 0.006 4 | 0.014 2 | 0.080 |
Tab. 1 Average time for adversarial sample generation on different datasets
数据集 | 数据长度 | AdvGAN | 本文方法 | FGSM |
---|---|---|---|---|
Car | 577 | 0.011 0 | 0.040 0 | 0.045 |
ECG5000 | 140 | 0.032 0 | 0.028 0 | 0.067 |
FordB | 500 | 0.008 6 | 0.010 0 | 0.045 |
Lightning2 | 637 | 0.011 0 | 0.044 0 | 0.056 |
Lightning7 | 319 | 0.006 8 | 0.012 5 | 0.020 |
Plane | 144 | 0.004 2 | 0.009 0 | 0.080 |
MoteStrain | 84 | 0.011 0 | 0.055 0 | 0.120 |
Trace | 275 | 0.006 4 | 0.014 2 | 0.080 |
数据类型 | 数据集 | 原始分类准确率/% | ||||
---|---|---|---|---|---|---|
FGSM | 本文方法 | AdvGAN | GATN | |||
Sensor | Car | 57.00 | 58.82 | 58.82 | 58.82 | 96 |
Chlorine | 81.65 | 98.00 | 75.20 | 71.63 | 87 | |
CinCETorso | 86.33 | 60.80 | 58.79 | 41.47 | 88 | |
Earthquakes | 74.00 | 54.90 | 29.41 | 17.64 | 31 | |
ECG | ECG200 | 91.00 | 25.27 | 41.75 | 40.66 | 23 |
ECG5000 | 93.89 | 17.07 | 27.10 | 22.73 | 93 | |
ECGFiveDays | 99.00 | 47.06 | 50.30 | 49.25 | 18 | |
Sensor | FordA | 93.14 | 48.35 | 48.35 | 48.35 | 48 |
FordB | 79.19 | 46.54 | 46.54 | 46.54 | 55 | |
Insect | 37.80 | 85.95 | 87.46 | 85.62 | 75 | |
Italy | 95.90 | 5.06 | 9.30 | 7.40 | 2 | |
Lightning2 | 71.00 | 54.50 | 22.73 | 27.27 | 53 | |
Lightning7 | 83.33 | 76.67 | 80.00 | 66.67 | 67 | |
StarLightCurves | 96.61 | 15.47 | 10.10 | 4.03 | 22 | |
MoteStrain | 92.52 | 8.30 | 10.35 | 8.60 | 5 | |
AllGestureX | 54.69 | 61.56 | 69.03 | 45.52 | 25 | |
AllGestureY | 73.67 | 83.10 | 78.67 | 62.33 | 53 | |
AllGestureZ | 70.61 | 76.01 | 77.17 | 63.87 | 43 | |
Phoneme | 32.31 | 50.31 | 48.41 | 41.40 | 76 | |
Plane | 96.88 | 13.20 | 81.13 | 84.90 | 72 | |
Sony1 | 72.92 | 14.57 | 27.14 | 25.71 | 46 | |
Sony2 | 91.34 | 6.90 | 17.67 | 16.38 | 4 | |
Trace | 100.00 | 18.00 | 68.00 | 70.00 | 100 | |
Wafer | 99.16 | 89.50 | 88.66 | 88.33 | 97 | |
FreezerRTrain | 90.66 | 44.80 | 44.85 | 44.85 | 0 | |
FreezerSTrain | 71.79 | 24.39 | 24.12 | 21.95 | 52 | |
DLWeekend | 31.88 | — | 4.55 | — | 78 |
Tab. 2 Comparison of success rate of attacking FCN model on Dtest dataset
数据类型 | 数据集 | 原始分类准确率/% | ||||
---|---|---|---|---|---|---|
FGSM | 本文方法 | AdvGAN | GATN | |||
Sensor | Car | 57.00 | 58.82 | 58.82 | 58.82 | 96 |
Chlorine | 81.65 | 98.00 | 75.20 | 71.63 | 87 | |
CinCETorso | 86.33 | 60.80 | 58.79 | 41.47 | 88 | |
Earthquakes | 74.00 | 54.90 | 29.41 | 17.64 | 31 | |
ECG | ECG200 | 91.00 | 25.27 | 41.75 | 40.66 | 23 |
ECG5000 | 93.89 | 17.07 | 27.10 | 22.73 | 93 | |
ECGFiveDays | 99.00 | 47.06 | 50.30 | 49.25 | 18 | |
Sensor | FordA | 93.14 | 48.35 | 48.35 | 48.35 | 48 |
FordB | 79.19 | 46.54 | 46.54 | 46.54 | 55 | |
Insect | 37.80 | 85.95 | 87.46 | 85.62 | 75 | |
Italy | 95.90 | 5.06 | 9.30 | 7.40 | 2 | |
Lightning2 | 71.00 | 54.50 | 22.73 | 27.27 | 53 | |
Lightning7 | 83.33 | 76.67 | 80.00 | 66.67 | 67 | |
StarLightCurves | 96.61 | 15.47 | 10.10 | 4.03 | 22 | |
MoteStrain | 92.52 | 8.30 | 10.35 | 8.60 | 5 | |
AllGestureX | 54.69 | 61.56 | 69.03 | 45.52 | 25 | |
AllGestureY | 73.67 | 83.10 | 78.67 | 62.33 | 53 | |
AllGestureZ | 70.61 | 76.01 | 77.17 | 63.87 | 43 | |
Phoneme | 32.31 | 50.31 | 48.41 | 41.40 | 76 | |
Plane | 96.88 | 13.20 | 81.13 | 84.90 | 72 | |
Sony1 | 72.92 | 14.57 | 27.14 | 25.71 | 46 | |
Sony2 | 91.34 | 6.90 | 17.67 | 16.38 | 4 | |
Trace | 100.00 | 18.00 | 68.00 | 70.00 | 100 | |
Wafer | 99.16 | 89.50 | 88.66 | 88.33 | 97 | |
FreezerRTrain | 90.66 | 44.80 | 44.85 | 44.85 | 0 | |
FreezerSTrain | 71.79 | 24.39 | 24.12 | 21.95 | 52 | |
DLWeekend | 31.88 | — | 4.55 | — | 78 |
数据集 | 原始分类准确率/% | 本文方法 | AdvGAN | FGSM | |||
---|---|---|---|---|---|---|---|
Earthquakes | 75.36 | 5.77 | 0.003 5 | 1.92 | 0.003 7 | 3.80 | 0.002 5 |
ECG200 | 88.00 | 1.14 | 0.003 3 | 2.27 | 0.001 0 | 6.80 | 0.002 5 |
ECG5000 | 94.36 | 17.88 | 0.005 5 | 5.28 | 0.001 8 | 5.90 | 0.002 5 |
ECGFiveDays | 94.20 | 39.26 | 0.007 7 | 37.15 | 0.027 9 | 13.03 | 0.002 5 |
FordB | 81.13 | 6.74 | 0.007 0 | 1.09 | 0.001 0 | 4.35 | 0.002 5 |
Insect | 45.10 | 78.04 | 0.006 3 | 73.71 | 0.033 5 | 69.65 | 0.002 5 |
Italy | 95.20 | 4.50 | 0.010 0 | 3.67 | 0.027 0 | 2.45 | 0.002 5 |
Lightning2 | 64.52 | 10.00 | 0.005 0 | 10.00 | 0.007 0 | 25.00 | 0.002 5 |
Lightning7 | 80.56 | 68.97 | 0.031 0 | 44.83 | 0.045 0 | 48.00 | 0.002 5 |
StarLightCurves | 97.12 | 12.56 | 0.000 3 | 6.60 | 0.000 9 | 15.19 | 0.002 5 |
MoteStrain | 92.32 | 6.40 | 0.010 0 | 3.03 | 0.004 9 | 5.40 | 0.002 5 |
AllGestureX | 63.47 | 52.73 | 0.000 7 | 35.04 | 0.001 6 | 61.41 | 0.002 5 |
AllGestureY | 71.22 | 76.50 | 0.000 8 | 26.65 | 0.000 2 | 75.35 | 0.002 5 |
AllGestureZ | 69.00 | 46.75 | 0.001 3 | 38.46 | 0.001 7 | 58.28 | 0.002 5 |
Phoneme | 32.10 | 25.63 | 0.010 0 | 28.21 | 0.012 0 | 35.26 | 0.002 5 |
Sony1 | 96.88 | 1.10 | 0.002 8 | 0.86 | 0.006 8 | 4.50 | 0.002 5 |
Sony2 | 91.60 | 8.02 | 0.007 0 | 11.30 | 0.021 0 | 3.90 | 0.002 5 |
Trace | 100.00 | 26.00 | 0.001 9 | 10.00 | 0.001 8 | 37.00 | 0.002 5 |
Wafer | 99.33 | 1.69 | 0.000 6 | 0.67 | 0.000 8 | 16.05 | 0.002 5 |
FreezerRTrain | 98.64 | 48.71 | 0.001 2 | 48.52 | 0.022 4 | 48.71 | 0.002 5 |
FreezerSTrain | 72.57 | 21.98 | 0.005 9 | 13.94 | 0.004 9 | 26.27 | 0.002 5 |
Tab. 3 Performance comparison of transfer attack against ResNet model on Dtest dataset
数据集 | 原始分类准确率/% | 本文方法 | AdvGAN | FGSM | |||
---|---|---|---|---|---|---|---|
Earthquakes | 75.36 | 5.77 | 0.003 5 | 1.92 | 0.003 7 | 3.80 | 0.002 5 |
ECG200 | 88.00 | 1.14 | 0.003 3 | 2.27 | 0.001 0 | 6.80 | 0.002 5 |
ECG5000 | 94.36 | 17.88 | 0.005 5 | 5.28 | 0.001 8 | 5.90 | 0.002 5 |
ECGFiveDays | 94.20 | 39.26 | 0.007 7 | 37.15 | 0.027 9 | 13.03 | 0.002 5 |
FordB | 81.13 | 6.74 | 0.007 0 | 1.09 | 0.001 0 | 4.35 | 0.002 5 |
Insect | 45.10 | 78.04 | 0.006 3 | 73.71 | 0.033 5 | 69.65 | 0.002 5 |
Italy | 95.20 | 4.50 | 0.010 0 | 3.67 | 0.027 0 | 2.45 | 0.002 5 |
Lightning2 | 64.52 | 10.00 | 0.005 0 | 10.00 | 0.007 0 | 25.00 | 0.002 5 |
Lightning7 | 80.56 | 68.97 | 0.031 0 | 44.83 | 0.045 0 | 48.00 | 0.002 5 |
StarLightCurves | 97.12 | 12.56 | 0.000 3 | 6.60 | 0.000 9 | 15.19 | 0.002 5 |
MoteStrain | 92.32 | 6.40 | 0.010 0 | 3.03 | 0.004 9 | 5.40 | 0.002 5 |
AllGestureX | 63.47 | 52.73 | 0.000 7 | 35.04 | 0.001 6 | 61.41 | 0.002 5 |
AllGestureY | 71.22 | 76.50 | 0.000 8 | 26.65 | 0.000 2 | 75.35 | 0.002 5 |
AllGestureZ | 69.00 | 46.75 | 0.001 3 | 38.46 | 0.001 7 | 58.28 | 0.002 5 |
Phoneme | 32.10 | 25.63 | 0.010 0 | 28.21 | 0.012 0 | 35.26 | 0.002 5 |
Sony1 | 96.88 | 1.10 | 0.002 8 | 0.86 | 0.006 8 | 4.50 | 0.002 5 |
Sony2 | 91.60 | 8.02 | 0.007 0 | 11.30 | 0.021 0 | 3.90 | 0.002 5 |
Trace | 100.00 | 26.00 | 0.001 9 | 10.00 | 0.001 8 | 37.00 | 0.002 5 |
Wafer | 99.33 | 1.69 | 0.000 6 | 0.67 | 0.000 8 | 16.05 | 0.002 5 |
FreezerRTrain | 98.64 | 48.71 | 0.001 2 | 48.52 | 0.022 4 | 48.71 | 0.002 5 |
FreezerSTrain | 72.57 | 21.98 | 0.005 9 | 13.94 | 0.004 9 | 26.27 | 0.002 5 |
1 | 任利强,贾舒宜,王海鹏,等. 基于深度学习的时间序列分类研究综述[J]. 电子与信息学报, 2024, 46(8): 3094-3116. |
REN L Q, JIA S Y, WANG H P, et al. A review of deep learning-based time series classification research[J]. Journal of Electronics and Information Technology, 2024, 46(8): 3094-3116. | |
2 | SUN L, ZHANG M, WANG B, et al. Few-shot class-incremental learning for medical time series classification[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(4): 1872-1882. |
3 | LUCAS B, SHIFAZ A, PELLETIER C, et al. Proximity Forest: an effective and scalable distance-based classifier for time series[J]. Data Mining and Knowledge Discovery, 2019, 33(3):607-635. |
4 | 宋钰丹,王晶,王雪徽,等. 基于自适应多任务学习的睡眠生理时序分类方法[J]. 计算机应用, 2024, 44(2): 654-662. |
SONG Y D, WANG J, WANG X H, et al. Sleep physiological time series classification method based on adaptive multi-task learning[J]. Journal of Computer Applications, 2024, 44(2): 654-662. | |
5 | 张伟雄,唐娉,张正. 基于时序自注意力机制的遥感数据时间序列分类[J]. 遥感学报, 2023, 27(8): 1914-1924. |
ZHANG W X, TANG P, ZHANG Z. Time series classification of remote sensing data based on temporal self-attention mechanism[J]. National Remote Sensing Bulletin, 2023, 27(8): 1914-1924. | |
6 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2024-01-20].. |
7 | 刘西蒙,谢乐辉,王耀鹏,等. 深度学习中的对抗攻击与防御[J]. 网络与信息安全学报, 2020, 6(5): 36-53. |
LIU X M, XIE L H, WANG Y P, et al. Adversarial attacks and defenses in deep learning[J]. Chinese Journal of Network and Information Security, 2020, 6(5): 36-53. | |
8 | GOOFELLOW J I, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2023-12-18].. |
9 | XIAO C, LI B, ZHU J Y, et al. Generating adversarial examples with adversarial networks[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2018: 3905-3911. |
10 | YANG W, YUAN J, WANG X, et al. TSadv: black-box adversarial attack on time series with local perturbations[J]. Engineering Applications of Artificial Intelligence, 2022, 114: No.105218. |
11 | OREGI I, DEL SER J, PEREZ A, et al. Adversarial sample crafting for time series classification with elastic similarity measures[C]// Intelligent distributed computing Ⅻ: 12th International Symposium on Intelligent Distributed Computing, SCI 798. Cham: Springer, 2018:26-39. |
12 | FAWAZ H I, FORESTIER G, WEBER J, et al. Adversarial attacks on deep neural networks for time series classification[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019:1-8. |
13 | KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial machine learning at scale[EB/OL]. [2024-02-01].. |
14 | PIALLA G, FAWAZ H I, DEVANNE M, et al. Smooth perturbations for time series adversarial attacks[C]// Proceedings of the 2022 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 13280. Cham: Springer, 2022:458-496. |
15 | DONG C G, ZHENG L N, CHEN W, et al. SWAP: exploiting second-ranked logits for adversarial attacks on time series[C]// Proceedings of the 2023 IEEE International Conference on Knowledge Graph. Piscataway: IEEE, 2023:117-125. |
16 | WU T, WANG X, QIAO S, et al. Small perturbations are enough: adversarial attacks on time series prediction[J]. Information Sciences, 2022, 587: 794-812. |
17 | CHEN Z, DOST K, ZHU X, et al. Targeted attacks on time series forecasting[C]// Proceedings of the 2023 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 13938. Cham: Springer, 2023:314-327. |
18 | KARIM F, MAJUMDAR S, DARABI H. Adversarial attacks on time series[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10):3309-3320. |
19 | HARFORD S, KARIM F, DARABI H. Generating adversarial samples on multivariate time series using variational autoencoders[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(9):1523-1538. |
20 | ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[EB/OL]. [2024-01-11].. |
21 | KINGMA P D, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-03-17].. |
22 | 曹春明,何戡,宗学军,等. 基于VAE和DLIESN的工控系统入侵检测方法[J]. 计算机工程与设计, 2023, 44(11): 3283-3289. |
CAO C M, HE K, ZONG X J, et al. Intrusion detection method of industrial control system based on VAE and DLIESN[J]. Computer Engineering and Design, 2023, 44(11): 3283-3289. | |
23 | 范振杰,罗娜. 基于改进VAE的时间序列数据增强方法[J]. 华东理工大学学报(自然科学版), 2024, 50(3): 400-410. |
FAN Z J, LUO N. A time series data enhancement method based on improved VAE[J]. Journal of East China University of Science and Technology, 2024, 50(3): 400-410. | |
24 | 张子宣,宗学军,何戡,等. 基于CVAE-CatBoost的工业控制网络异常流量检测研究[J]. 计算机工程, 2023, 49(5): 173-180. |
ZHANG Z X, ZONG X J, HE K, et al. Research on abnormal traffic detection in industrial control network based on CVAE-CatBoost[J]. Computer Engineering, 2023, 49(5): 173-180. | |
25 | FENG W, XU N, ZHANG T, et al. Dynamic generative targeted attacks with pattern injection[C]// Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023:16404-16414. |
26 | WANG Z, YANG H, FENG Y, et al. Towards transferable targeted adversarial examples[C]// Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023:20534-20543. |
27 | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]// Proceedings of 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017:39-57. |
28 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7132-7141. |
29 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):386-397. |
30 | ZHOU B, KHOSLA A, LAPEDRIZA À, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2921-2929. |
31 | YE L, KEOGH E. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification[J]. Data Mining and Knowledge Discovery, 2011, 22(1/2):149-182. |
32 | CHUNG F L, FU T C, NG V, et al. An evolutionary approach to pattern-based time series segmentation[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5):471-489. |
33 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
34 | DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6):1293-1305. |
35 | WANG Z, YAN W, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017:1578-1585. |
36 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[1] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[2] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[3] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[4] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[5] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[6] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[7] | Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method [J]. Journal of Computer Applications, 2025, 45(3): 823-831. |
[8] | Ruilong CHEN, Tao HU, Youjun BU, Peng YI, Xianjun HU, Wei QIAO. Stacking ensemble adversarial defense method for encrypted malicious traffic detection model [J]. Journal of Computer Applications, 2025, 45(3): 864-871. |
[9] | Chenwei SUN, Junli HOU, Xianggen LIU, Jiancheng LYU. Large language model prompt generation method for engineering drawing understanding [J]. Journal of Computer Applications, 2025, 45(3): 801-807. |
[10] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[11] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[12] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[13] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[14] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[15] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||