Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2211-2220.DOI: 10.11772/j.issn.1001-9081.2024070948
• Artificial intelligence • Previous Articles Next Articles
Yuelan ZHANG, Jing SU(), Hangyu ZHAO, Baili YANG
Received:
2024-07-08
Revised:
2024-09-19
Accepted:
2024-09-26
Online:
2025-07-10
Published:
2025-07-10
Contact:
Jing SU
About author:
ZHANG Yuelan, born in 2000, M. S. candidate. Her research interests include recommendation algorithms.Supported by:
通讯作者:
苏静
作者简介:
张悦岚(2000—),女,贵州黔西人,硕士研究生,CCF会员,主要研究方向:推荐算法基金资助:
CLC Number:
Yuelan ZHANG, Jing SU, Hangyu ZHAO, Baili YANG. Multi-view knowledge-aware and interactive distillation recommendation algorithm[J]. Journal of Computer Applications, 2025, 45(7): 2211-2220.
张悦岚, 苏静, 赵航宇, 杨白利. 基于知识感知与交互的多视图蒸馏推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2211-2220.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070948
数据集 | 用户数 | 项目数 | 交互数 | 实体数 | 关系数 | 三元组数 |
---|---|---|---|---|---|---|
Book-Crossing | 17 860 | 14 967 | 139 746 | 77 903 | 25 | 151 500 |
MovieLens-1M | 6 036 | 2 445 | 753 772 | 182 011 | 12 | 1 241 996 |
Last.FM | 1 872 | 3 846 | 42 346 | 9 366 | 60 | 15 518 |
Tab. 1 Statistical information of experiment datasets
数据集 | 用户数 | 项目数 | 交互数 | 实体数 | 关系数 | 三元组数 |
---|---|---|---|---|---|---|
Book-Crossing | 17 860 | 14 967 | 139 746 | 77 903 | 25 | 151 500 |
MovieLens-1M | 6 036 | 2 445 | 753 772 | 182 011 | 12 | 1 241 996 |
Last.FM | 1 872 | 3 846 | 42 346 | 9 366 | 60 | 15 518 |
模型 | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
BPR | 0.659 5 | 0.613 7 | 0.892 6 | 0.793 4 | 0.757 0 | 0.701 2 |
CKE | 0.675 1 | 0.625 1 | 0.908 6 | 0.802 5 | 0.748 1 | 0.674 6 |
RippleNet | 0.721 7 | 0.645 8 | 0.918 9 | 0.842 6 | 0.776 0 | 0.703 4 |
PER | 0.605 8 | 0.574 3 | 0.714 8 | 0.667 4 | 0.640 1 | 0.604 5 |
KGNN-LS | 0.676 8 | 0.632 1 | 0.914 9 | 0.841 0 | 0.805 8 | 0.724 1 |
KGAT | 0.732 4 | 0.654 1 | 0.914 1 | 0.844 7 | 0.829 7 | 0.743 7 |
CKAN | 0.740 7 | 0.667 4 | 0.909 3 | 0.840 7 | 0.841 2 | 0.758 4 |
KGIN | 0.729 8 | 0.661 6 | 0.918 5 | 0.842 7 | 0.847 8 | 0.761 1 |
CG-KGR | 0.748 7 | 0.668 5 | 0.911 6 | 0.836 0 | 0.834 3 | 0.745 1 |
KGIC | 0.921 5 | 0.852 5 | 0.843 4 | |||
KGRec | 0.730 5 | 0.671 9 | 0.767 2 | |||
MKDRec | 0.775 9 | 0.700 6 | 0.937 9 | 0.865 7 | 0.882 3 | 0.804 2 |
Tab. 2 Overall performance comparison of different models
模型 | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
BPR | 0.659 5 | 0.613 7 | 0.892 6 | 0.793 4 | 0.757 0 | 0.701 2 |
CKE | 0.675 1 | 0.625 1 | 0.908 6 | 0.802 5 | 0.748 1 | 0.674 6 |
RippleNet | 0.721 7 | 0.645 8 | 0.918 9 | 0.842 6 | 0.776 0 | 0.703 4 |
PER | 0.605 8 | 0.574 3 | 0.714 8 | 0.667 4 | 0.640 1 | 0.604 5 |
KGNN-LS | 0.676 8 | 0.632 1 | 0.914 9 | 0.841 0 | 0.805 8 | 0.724 1 |
KGAT | 0.732 4 | 0.654 1 | 0.914 1 | 0.844 7 | 0.829 7 | 0.743 7 |
CKAN | 0.740 7 | 0.667 4 | 0.909 3 | 0.840 7 | 0.841 2 | 0.758 4 |
KGIN | 0.729 8 | 0.661 6 | 0.918 5 | 0.842 7 | 0.847 8 | 0.761 1 |
CG-KGR | 0.748 7 | 0.668 5 | 0.911 6 | 0.836 0 | 0.834 3 | 0.745 1 |
KGIC | 0.921 5 | 0.852 5 | 0.843 4 | |||
KGRec | 0.730 5 | 0.671 9 | 0.767 2 | |||
MKDRec | 0.775 9 | 0.700 6 | 0.937 9 | 0.865 7 | 0.882 3 | 0.804 2 |
l | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.754 6 | 0.684 2 | 0.933 1 | 0.860 9 | 0.873 5 | 0.793 1 |
2 | 0.7725 | 0.6986 | 0.9377 | 0.8631 | 0.8822 | 0.8042 |
3 | 0.756 5 | 0.690 3 | 0.932 2 | 0.859 9 | 0.876 0 | 0.800 1 |
Tab. 3 Influence of convolutional aggregation layers l on AUC and F1 in collaborative view
l | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.754 6 | 0.684 2 | 0.933 1 | 0.860 9 | 0.873 5 | 0.793 1 |
2 | 0.7725 | 0.6986 | 0.9377 | 0.8631 | 0.8822 | 0.8042 |
3 | 0.756 5 | 0.690 3 | 0.932 2 | 0.859 9 | 0.876 0 | 0.800 1 |
k | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.7738 | 0.6950 | 0.9368 | 0.8642 | 0.881 7 | 0.801 9 |
2 | 0.771 4 | 0.685 1 | 0.936 3 | 0.863 8 | 0.8823 | 0.8042 |
3 | 0.768 3 | 0.684 9 | 0.936 1 | 0.862 7 | 0.881 4 | 0.803 5 |
Tab. 4 Influence of convolutional aggregation layers k on AUC and F1 in knowledge view
k | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.7738 | 0.6950 | 0.9368 | 0.8642 | 0.881 7 | 0.801 9 |
2 | 0.771 4 | 0.685 1 | 0.936 3 | 0.863 8 | 0.8823 | 0.8042 |
3 | 0.768 3 | 0.684 9 | 0.936 1 | 0.862 7 | 0.881 4 | 0.803 5 |
t | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.775 9 | 0.697 9 | 0.9379 | 0.8657 | 0.880 0 | 0.794 7 |
2 | 0.774 6 | 0.693 5 | 0.937 7 | 0.863 1 | 0.8822 | 0.8041 |
3 | 0.774 1 | 0.691 7 | 0.936 1 | 0.861 6 | 0.875 9 | 0.796 2 |
Tab. 5 Influence of convolutional aggregation layers t on AUC and F1 in associated view
t | Booking-Crossing | MovieLens-1M | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
1 | 0.775 9 | 0.697 9 | 0.9379 | 0.8657 | 0.880 0 | 0.794 7 |
2 | 0.774 6 | 0.693 5 | 0.937 7 | 0.863 1 | 0.8822 | 0.8041 |
3 | 0.774 1 | 0.691 7 | 0.936 1 | 0.861 6 | 0.875 9 | 0.796 2 |
λ1 | Booking | MovieLens | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
10-3 | 0.774 9 | 0.691 8 | 0.937 5 | 0.865 2 | 0.881 2 | 0.803 4 |
10-2 | 0.775 1 | 0.692 1 | 0.9378 | 0.8654 | 0.8821 | 0.8042 |
10-1 | 0.7762 | 0.6987 | 0.927 6 | 0.855 2 | 0.880 7 | 0.803 9 |
100 | 0.765 6 | 0.682 3 | 0.860 4 | 0.794 4 | 0.828 0 | 0.740 6 |
Tab. 6 Influence of contrastive enhancement loss weight λ1 on AUC and F1
λ1 | Booking | MovieLens | Last.FM | |||
---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | |
10-3 | 0.774 9 | 0.691 8 | 0.937 5 | 0.865 2 | 0.881 2 | 0.803 4 |
10-2 | 0.775 1 | 0.692 1 | 0.9378 | 0.8654 | 0.8821 | 0.8042 |
10-1 | 0.7762 | 0.6987 | 0.927 6 | 0.855 2 | 0.880 7 | 0.803 9 |
100 | 0.765 6 | 0.682 3 | 0.860 4 | 0.794 4 | 0.828 0 | 0.740 6 |
模型 | 平均距离均值 |
---|---|
MKDRec | 19.14 |
KGIC | 22.82 |
KGRec | 21.94 |
Tab. 7 Mean distance of embeddings
模型 | 平均距离均值 |
---|---|
MKDRec | 19.14 |
KGIC | 22.82 |
KGRec | 21.94 |
模型 | 时间复杂度 | 平均训练时间/s |
---|---|---|
KGIN | 10.94 | |
KGIC | 11.27 | |
KGRec | 8.13 | |
MKDRec | 9.42 |
Tab. 8 Comparison of time complexity and average training time among different models
模型 | 时间复杂度 | 平均训练时间/s |
---|---|---|
KGIN | 10.94 | |
KGIC | 11.27 | |
KGRec | 8.13 | |
MKDRec | 9.42 |
[1] | 许小颖,陈熙,陈源,等.区块链在个性化推荐系统中的应用研究综述[J].大数据,2022, 8(3): 87-102. |
XU X Y, CHEN X, CHEN Y, et al. A review of blockchain applications in personalized recommender systems [J]. Big Data Research, 2022, 8(3): 87-102. | |
[2] | 于蒙,何文涛,周绪川,等.推荐系统综述[J].计算机应用,2022, 42(6): 1898-1913. |
YU M, HE W T, ZHOU X C, et al. Review of recommendation system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. | |
[3] | LIAN J, ZHOU X, ZHANG F, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1754-1763. |
[4] | 顾嘉静,杨丹,聂铁铮,等.基于多视图融合跨层对比学习的推荐算法[J].计算机工程,2024, 50(1): 120-128. |
GU J J, YANG D, NIE T Z, et al. Recommendation algorithm based on multi-view fusion cross-layer contrastive learning [J]. Computer Engineering, 2024, 50(1): 120-128. | |
[5] | YING R, HE R, CHEN K, et al. Graph convolutional neural networks for Web-scale recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983. |
[6] | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
[7] | LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2320-2329. |
[8] | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
[9] | WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5329-5336. |
[10] | HU B B, SHI C, XIN ZHAO W N, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540. |
[11] | HONG H, GUO H, LIN Y, et al. An attention-based graph neural network for heterogeneous structural learning [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4132-4139. |
[12] | WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. |
[13] | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
[14] | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887. |
[15] | 李瑞征,赵加坤.一种融合知识图注意神经网络的推荐算法[J].计算机应用与软件,2024, 41(3): 276-282. |
LI R Z, ZHAO J K. Knowledge graph attention network for recommendation systems [J]. Computer Applications and Software, 2024, 41(3): 276-282. | |
[16] | ZOU D, WEI W, WANG Z, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2817-2826. |
[17] | 程章桃,钟婷,张晟铭,等.基于图学习的推荐系统研究综述[J].计算机科学,2022, 49(9): 1-13. |
CHENG Z T, ZHONG T, ZHANG S M, et al. Survey of recommender systems based on graph learning [J]. Computer Science, 2022, 49(9): 1-13. | |
[18] | YANG Y, HUANG C, XIA L, et al. Knowledge graph self-supervised rationalization for recommendation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3046-3056. |
[19] | CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 27-34. |
[20] | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
[21] | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
[22] | XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79. |
[23] | YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443. |
[24] | 刘静,郑铜亚,郝沁汾.图知识蒸馏综述:算法分类与应用分析[J].软件学报,2024, 35(2): 675-710. |
LIU J, ZHENG T Y, HAO Q F. Survey on knowledge distillation with graph: algorithms classification and application analysis [J]. Journal of Software, 2024, 35(2): 675-710. | |
[25] | MINAMI S, HIRAKAWA T, YAMASHITA T, et al. Knowledge transfer graph for deep collaborative learning [C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS 12625. Cham: Springer, 2021: 203-217. |
[26] | WANG H, LIAN D, GE Y. Binarized collaborative filtering with distilling graph convolutional networks [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 4802-4808. |
[27] | ZHANG Z, SHU X, YU B, et al. Distilling knowledge from well-informed soft labels for neural relation extraction [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9620-9627. |
[28] | TAO Y, LI Y, ZHANG S, et al. Revisiting graph based social recommendation: a distillation enhanced social graph network [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2830-2838. |
[29] | KANG S, HWANG J, KWEON W, et al. DE-RRD: a knowledge distillation framework for recommender system [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 605-614. |
[30] | KWEON W B, KANG S K, YU H. Bidirectional distillation for top-K recommender system [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 3861-3871. |
[31] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
[32] | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. |
[33] | YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach [C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. |
[34] | WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977. |
[35] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. |
[36] | WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development. New York: ACM, 2020: 219-228. |
[37] | CHEN Y, YANG Y, WANG Y, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 299-311. |
[1] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[2] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[3] | Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model [J]. Journal of Computer Applications, 2025, 45(7): 2180-2187. |
[4] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[5] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[6] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
[7] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[8] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[9] | Xuefei ZHANG, Liping ZHANG, Sheng YAN, Min HOU, Yubo ZHAO. Personalized learning recommendation in collaboration of knowledge graph and large language model [J]. Journal of Computer Applications, 2025, 45(3): 773-784. |
[10] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[11] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[12] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[13] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[14] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[15] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||