[1] |
LI Z, FARIMANI A B. Graph neural network-accelerated Lagrangian fluid simulation[J]. Computers & Graphics, 2022, 103: 201-211.
|
[2] |
TOSHEV A P, GALLETTI G, BRANDSTETTER J, et al. Learning Lagrangian fluid mechanics with E(3)-equivariant graph neural networks[C]// Proceedings of the 11th International Conference on Learning Representations, LNCS 14072. Cham: Springer, 2023: 332-341.
|
[3] |
刘树森,何小伟,王文成,等.光滑粒子流体动力学流体仿真技术综述[J].软件学报,2024,35(1):481-512.
|
|
LIU S S, HE X W, WANG W C, et al. Smoothed particle hydrodynamics fluid simulation technology[J]. Journal of Software, 2024, 35(1): 481-512.
|
[4] |
马汉达,吴亚东.多域时空层次图神经网络的空气质量预测[J].计算机应用,2025,45(2):444-452.
|
|
MA H D, WU Y D. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction[J]. Journal of Computer Applications, 2025, 45(2): 444-452.
|
[5] |
苟志勇,蒋权,黄文清.并行重采样物理信息神经网络:用于低雷诺数下不可压缩流体流动分析[J/OL].计算力学学报,2024[2024-11-02]. .
|
|
GOU Z Y, JIANG Q, HUANG W Q. Parallel resampling physical information neural network: for incompressible fluid flow analysis at low Reynolds number[J/OL]. Journal of Computational Mechanics, 2024[2024-11-02]. .
|
[6] |
王健宗,孔令炜,黄章成,等.图神经网络综述[J].计算机工程,2021,47(4):1-12.
|
|
WANG J Z, KONG L W, HUANG Z C, et al. Survey of graph neural network[J]. Computer Engineering, 2021, 47(4): 1-12.
|
[7] |
吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14-24.
|
|
WU G D, ZHA Z K, TU L J, et al. Research advances in graph neural network recommendation[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1): 14-24.
|
[8] |
徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5): 755-780.
|
|
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
|
[9] |
LIU Z, ZHOU J. Introduction to graph neural networks[M]. Cham: Springer, 2022: 21-39.
|
[10] |
吴博,梁循,张树森,等.图神经网络前沿进展与应用[J].计算机学报,2022,45(1):35-68.
|
|
WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35-68.
|
[11] |
SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks[C]// Proceedings of the 37th International Conference on Machine Learning. [S.l.]: JMLR.org, 2020: 8459-8468.
|
[12] |
HUANG W, HAN J, RONG Y, et al. Equivariant graph mechanics networks with constraints[EB/OL].[2024-04-06]. .
|
[13] |
HAN J, HUANG W, XU T, et al. Equivariant graph hierarchy-based neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022, 35: 9176-9187.
|
[14] |
BAI Q, XU T, HUANG J, et al. Geometric deep learning methods and applications in 3D structure-based drug design[J]. Drug Discovery Today, 2024, 29(7): 104024.
|
[15] |
LIU Y, CHENG J, ZHAO H, et al. SEGNO: generalizing Equivariant Graph Neural Networks with Physical Inductive Biases[EB/OL]. [2024-03-16]. .
|
[16] |
WU L, HOU Z, YUAN J, et al. Equivariant spatio-temporal attentive graph networks to simulate physical dynamics[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 45360-45380.
|
[17] |
CREMER J, MEDRANO SANDONAS L, TKATCHENKO A, et al. Equivariant graph neural networks for toxicity prediction[J]. Chemical Research in Toxicology, 2023, 36(10): 1561-1573.
|
[18] |
ROMERO D, BEKKERS E, TOMCZAK J, et al. Attentive group equivariant convolutional networks[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 8188-8199.
|
[19] |
ZHENG Z, LIU Y, LI J, et al. Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Broad Physical Dynamics Learning[C]// Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 4548-4558.
|
[20] |
MUSAELIAN A, BATZNER S, JOHANSSON A, et al. Learning local equivariant representations for large-scale atomistic dynamics[J]. Nature Communications, 2023, 14(1): 579.
|
[21] |
BATZNER S, MUSAELIAN A, SUN L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[J]. Nature Communications, 2022, 13(1): 2453.
|
[22] |
JOHANNES B, ROB H, VAN DER POL E, et al. Geometric and physical quantities improve E(3) equivariant message passing[EB/OL]. [2023-12-11]. .
|
[23] |
LIU Y, WANG L, LIU M, et al. Spherical message passing for 3D molecular graphs[EB/OL]. [2023-11-01]. .
|
[24] |
KÖHLER J, KLEIN L, NOÉ F. Equivariant flows: exact likelihood generative learning for symmetric densities[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 5361-5370.
|
[25] |
SATORRAS V G, HOOGEBOOM E, WELLING M. E(n) equivariant graph neural networks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: ACM, 2021: 9323-9332.
|
[26] |
KUMAR K, VANTASSEL J. GNS: a generalizable graph neural network-based simulator for particulate and fluid modeling[J]. Journal of Open Source Software, 2023,8(88): 5025.
|
[27] |
HAN J, RONG Y, XU T, et al. Geometrically equivariant graph neural networks: a survey[EB/OL]. [2024-10-15]. .
|