Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2656-2665.DOI: 10.11772/j.issn.1001-9081.2024081130
• Advanced computing • Previous Articles
Zhichao YUAN, Lei YANG(), Jinglin TIAN, Xiaowei WEI, Kangshun LI
Received:
2024-08-12
Revised:
2024-11-10
Accepted:
2024-11-12
Online:
2024-11-19
Published:
2025-08-10
Contact:
Lei YANG
About author:
YUAN Zhichao, born in 2000, M. S. candidate. His research interests include multi-objective optimization, evolutionary computation.Supported by:
通讯作者:
杨磊
作者简介:
袁志超(2000—),男,广东东莞人,硕士研究生,CCF会员,主要研究方向:多目标优化、进化计算基金资助:
CLC Number:
Zhichao YUAN, Lei YANG, Jinglin TIAN, Xiaowei WEI, Kangshun LI. Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems[J]. Journal of Computer Applications, 2025, 45(8): 2656-2665.
袁志超, 杨磊, 田井林, 魏晓威, 李康顺. 面向复杂约束多目标优化问题的双种群双阶段进化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2656-2665.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081130
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/14/0 | 0/13/1 | 0/10/4 | 2/9/3 | 0/13/1 | 4/6/4 | ||||||||
LIRCMOP1 | 1.542 6E-2 | 4.37E-3 | 2.859 6E-2 | 8.40E-3 | 1.171 8E-1 | 9.67E-2 | 1.040 6E-2 | 2.03E-3 | 1.072 7E-2 | 2.97E-3 | 7.395 1E-3 | 8.87E-4 | 8.767 1E-3 | 1.46E-3 |
LIRCMOP2 | 2.130 0E-2 | 1.14E-2 | 5.041 3E-2 | 4.00E-2 | 6.571 3E-2 | 3.17E-2 | 9.399 3E-3 | 2.31E-3 | 8.397 2E-3 | 3.26E-3 | 8.244 5E-3 | 1.32E-3 | 6.868 8E-3 | 6.79E-4 |
LIRCMOP3 | 6.598 6E-2 | 3.39E-2 | 2.269 6E-2 | 1.26E-2 | 9.925 3E-2 | 6.21E-2 | 5.047 4E-3 | 3.20E-3 | 1.354 2E-2 | 8.50E-3 | 6.184 5E-3 | 3.75E-3 | 8.536 4E-3 | 6.94E-3 |
LIRCMOP4 | 5.752 0E-2 | 2.99E-2 | 2.607 3E-2 | 1.49E-2 | 1.119 3E-1 | 7.33E-2 | 5.066 8E-3 | 3.90E-3 | 1.414 9E-2 | 1.06E-2 | 5.846 7E-3 | 4.22E-3 | 7.745 8E-3 | 7.41E-3 |
LIRCMOP5 | 5.382 5E-3 | 1.97E-4 | 5.202 6E-3 | 1.49E-3 | 7.115 9E-3 | 1.48E-3 | 5.159 4E-3 | 1.76E-4 | 5.334 9E-1 | 5.24E-1 | 5.854 0E-3 | 1.43E-3 | 5.110 6E-3 | 1.62E-4 |
LIRCMOP6 | 5.417 6E-3 | 1.87E-4 | 5.165 0E-3 | 1.36E-3 | 6.364 7E-3 | 2.01E-4 | 5.246 9E-3 | 1.22E-4 | 3.903 7E-1 | 5.90E-1 | 5.145 7E-3 | 1.24E-4 | 5.132 5E-3 | 1.22E-4 |
LIRCMOP7 | 7.254 1E-3 | 2.36E-4 | 8.383 3E-3 | 4.61E-4 | 7.139 8E-3 | 3.27E-4 | 7.180 2E-3 | 1.98E-4 | 9.596 8E-3 | 3.21E-3 | 8.342 4E-3 | 6.02E-3 | 7.045 7E-3 | 1.13E-4 |
LIRCMOP8 | 7.261 4E-3 | 2.01E-4 | 8.269 2E-3 | 5.62E-4 | 7.128 6E-3 | 1.92E-4 | 7.172 1E-3 | 2.33E-4 | 8.107 6E-3 | 2.29E-3 | 6.839 2E-3 | 3.70E-4 | 7.063 3E-3 | 1.77E-4 |
LIRCMOP9 | 2.674 0E-3 | 7.27E-5 | 4.191 7E-3 | 1.71E-4 | 4.387 0E-2 | 3.70E-2 | 2.811 3E-3 | 8.24E-5 | 1.050 3E-1 | 6.37E-2 | 3.083 5E-3 | 9.99E-4 | 2.611 5E-3 | 6.27E-5 |
LIRCMOP10 | 4.728 0E-3 | 1.64E-4 | 5.606 5E-3 | 2.09E-4 | 4.572 2E-3 | 1.59E-4 | 4.755 0E-3 | 1.46E-4 | 4.553 9E-2 | 8.62E-2 | 4.140 3E-3 | 1.09E-4 | 4.518 9E-3 | 1.44E-4 |
LIRCMOP11 | 2.402 0E-3 | 5.05E-5 | 2.611 6E-3 | 1.68E-4 | 2.371 5E-3 | 4.01E-5 | 2.387 4E-3 | 4.72E-5 | 3.926 5E-3 | 5.32E-3 | 2.362 0E-3 | 3.77E-5 | 2.331 8E-3 | 3.51E-5 |
LIRCMOP12 | 3.078 3E-3 | 1.87E-4 | 3.671 7E-3 | 2.92E-4 | 3.009 1E-3 | 5.04E-5 | 3.015 3E-3 | 1.81E-4 | 7.987 4E-3 | 7.46E-3 | 2.995 2E-3 | 7.00E-5 | 2.959 2E-3 | 1.56E-4 |
LIRCMOP13 | 1.068 7E-1 | 1.60E-3 | 9.341 5E-2 | 1.11E-4 | 9.384 4E-2 | 7.74E-4 | 1.069 2E-1 | 1.36E-3 | 9.374 2E-2 | 1.10E-3 | 9.806 9E-2 | 1.08E-3 | 9.366 4E-2 | 1.23E-3 |
LIRCMOP14 | 9.996 2E-2 | 1.13E-3 | 9.665 2E-2 | 3.72E-4 | 9.574 1E-2 | 8.88E-4 | 9.992 9E-2 | 1.17E-3 | 9.602 2E-2 | 1.15E-3 | 1.011 9E-1 | 1.02E-3 | 9.523 7E-2 | 7.43E-4 |
Tab. 1 Comparison of IGD values of DPDSEA and six algorithms on LIRCMOP test set
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/14/0 | 0/13/1 | 0/10/4 | 2/9/3 | 0/13/1 | 4/6/4 | ||||||||
LIRCMOP1 | 1.542 6E-2 | 4.37E-3 | 2.859 6E-2 | 8.40E-3 | 1.171 8E-1 | 9.67E-2 | 1.040 6E-2 | 2.03E-3 | 1.072 7E-2 | 2.97E-3 | 7.395 1E-3 | 8.87E-4 | 8.767 1E-3 | 1.46E-3 |
LIRCMOP2 | 2.130 0E-2 | 1.14E-2 | 5.041 3E-2 | 4.00E-2 | 6.571 3E-2 | 3.17E-2 | 9.399 3E-3 | 2.31E-3 | 8.397 2E-3 | 3.26E-3 | 8.244 5E-3 | 1.32E-3 | 6.868 8E-3 | 6.79E-4 |
LIRCMOP3 | 6.598 6E-2 | 3.39E-2 | 2.269 6E-2 | 1.26E-2 | 9.925 3E-2 | 6.21E-2 | 5.047 4E-3 | 3.20E-3 | 1.354 2E-2 | 8.50E-3 | 6.184 5E-3 | 3.75E-3 | 8.536 4E-3 | 6.94E-3 |
LIRCMOP4 | 5.752 0E-2 | 2.99E-2 | 2.607 3E-2 | 1.49E-2 | 1.119 3E-1 | 7.33E-2 | 5.066 8E-3 | 3.90E-3 | 1.414 9E-2 | 1.06E-2 | 5.846 7E-3 | 4.22E-3 | 7.745 8E-3 | 7.41E-3 |
LIRCMOP5 | 5.382 5E-3 | 1.97E-4 | 5.202 6E-3 | 1.49E-3 | 7.115 9E-3 | 1.48E-3 | 5.159 4E-3 | 1.76E-4 | 5.334 9E-1 | 5.24E-1 | 5.854 0E-3 | 1.43E-3 | 5.110 6E-3 | 1.62E-4 |
LIRCMOP6 | 5.417 6E-3 | 1.87E-4 | 5.165 0E-3 | 1.36E-3 | 6.364 7E-3 | 2.01E-4 | 5.246 9E-3 | 1.22E-4 | 3.903 7E-1 | 5.90E-1 | 5.145 7E-3 | 1.24E-4 | 5.132 5E-3 | 1.22E-4 |
LIRCMOP7 | 7.254 1E-3 | 2.36E-4 | 8.383 3E-3 | 4.61E-4 | 7.139 8E-3 | 3.27E-4 | 7.180 2E-3 | 1.98E-4 | 9.596 8E-3 | 3.21E-3 | 8.342 4E-3 | 6.02E-3 | 7.045 7E-3 | 1.13E-4 |
LIRCMOP8 | 7.261 4E-3 | 2.01E-4 | 8.269 2E-3 | 5.62E-4 | 7.128 6E-3 | 1.92E-4 | 7.172 1E-3 | 2.33E-4 | 8.107 6E-3 | 2.29E-3 | 6.839 2E-3 | 3.70E-4 | 7.063 3E-3 | 1.77E-4 |
LIRCMOP9 | 2.674 0E-3 | 7.27E-5 | 4.191 7E-3 | 1.71E-4 | 4.387 0E-2 | 3.70E-2 | 2.811 3E-3 | 8.24E-5 | 1.050 3E-1 | 6.37E-2 | 3.083 5E-3 | 9.99E-4 | 2.611 5E-3 | 6.27E-5 |
LIRCMOP10 | 4.728 0E-3 | 1.64E-4 | 5.606 5E-3 | 2.09E-4 | 4.572 2E-3 | 1.59E-4 | 4.755 0E-3 | 1.46E-4 | 4.553 9E-2 | 8.62E-2 | 4.140 3E-3 | 1.09E-4 | 4.518 9E-3 | 1.44E-4 |
LIRCMOP11 | 2.402 0E-3 | 5.05E-5 | 2.611 6E-3 | 1.68E-4 | 2.371 5E-3 | 4.01E-5 | 2.387 4E-3 | 4.72E-5 | 3.926 5E-3 | 5.32E-3 | 2.362 0E-3 | 3.77E-5 | 2.331 8E-3 | 3.51E-5 |
LIRCMOP12 | 3.078 3E-3 | 1.87E-4 | 3.671 7E-3 | 2.92E-4 | 3.009 1E-3 | 5.04E-5 | 3.015 3E-3 | 1.81E-4 | 7.987 4E-3 | 7.46E-3 | 2.995 2E-3 | 7.00E-5 | 2.959 2E-3 | 1.56E-4 |
LIRCMOP13 | 1.068 7E-1 | 1.60E-3 | 9.341 5E-2 | 1.11E-4 | 9.384 4E-2 | 7.74E-4 | 1.069 2E-1 | 1.36E-3 | 9.374 2E-2 | 1.10E-3 | 9.806 9E-2 | 1.08E-3 | 9.366 4E-2 | 1.23E-3 |
LIRCMOP14 | 9.996 2E-2 | 1.13E-3 | 9.665 2E-2 | 3.72E-4 | 9.574 1E-2 | 8.88E-4 | 9.992 9E-2 | 1.17E-3 | 9.602 2E-2 | 1.15E-3 | 1.011 9E-1 | 1.02E-3 | 9.523 7E-2 | 7.43E-4 |
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/13/1 | 1/12/1 | 3/8/3 | 3/7/4 | 0/7/7 | 5/5/4 | ||||||||
LIRCMOP1 | 2.328 1E-1 | 3.24E-3 | 2.235 5E-1 | 7.02E-3 | 1.906 0E-1 | 2.94E-2 | 2.355 6E-1 | 8.87E-4 | 2.342 6E-1 | 2.51E-3 | 2.371 8E-1 | 3.10E-4 | 2.360 7E-1 | 1.27E-3 |
LIRCMOP2 | 3.503 2E-1 | 6.52E-3 | 3.290 8E-1 | 2.41E-2 | 3.276 8E-1 | 1.51E-2 | 3.572 1E-1 | 1.71E-3 | 3.580 1E-1 | 1.70E-3 | 3.587 8E-1 | 4.84E-4 | 3.588 1E-1 | 5.85E-4 |
LIRCMOP3 | 1.782 6E-1 | 1.53E-2 | 1.985 1E-1 | 5.25E-3 | 1.691 2E-1 | 2.10E-2 | 2.060 7E-1 | 1.89E-3 | 2.026 6E-1 | 3.67E-3 | 2.080 7E-1 | 5.48E-4 | 2.039 9E-1 | 4.17E-3 |
LIRCMOP4 | 2.899 9E-1 | 1.39E-2 | 3.036 9E-1 | 6.05E-3 | 2.660 3E-1 | 3.56E-2 | 3.148 1E-1 | 2.30E-3 | 3.114 6E-1 | 4.74E-3 | 3.160 0E-1 | 1.43E-3 | 3.133 9E-1 | 3.60E-3 |
LIRCMOP5 | 2.920 1E-1 | 9.55E-5 | 2.919 1E-1 | 1.13E-3 | 2.908 9E-1 | 1.22E-3 | 2.921 3E-1 | 8.85E-5 | 1.514 6E-1 | 1.27E-1 | 2.915 7E-1 | 1.05E-3 | 2.921 5E-1 | 8.88E-5 |
LIRCMOP6 | 1.972 1E-1 | 1.05E-4 | 1.973 4E-1 | 7.44E-4 | 1.967 6E-1 | 9.99E-5 | 1.973 2E-1 | 8.65E-5 | 1.338 8E-1 | 8.50E-2 | 1.973 6E-1 | 7.07E-5 | 1.973 8E-1 | 7.81E-5 |
LIRCMOP7 | 2.945 6E-1 | 1.19E-4 | 2.936 5E-1 | 3.47E-4 | 2.944 9E-1 | 4.02E-4 | 2.946 3E-1 | 9.09E-5 | 2.920 1E-1 | 3.07E-3 | 2.937 9E-1 | 3.78E-3 | 2.946 6E-1 | 5.65E-5 |
LIRCMOP8 | 2.945 5E-1 | 1.19E-4 | 2.936 1E-1 | 4.42E-4 | 2.946 4E-1 | 7.42E-5 | 2.946 3E-1 | 1.08E-4 | 2.936 8E-1 | 2.27E-3 | 2.946 4E-1 | 1.09E-4 | 2.946 5E-1 | 9.52E-5 |
LIRCMOP9 | 5.675 4E-1 | 6.53E-5 | 5.662 1E-1 | 1.94E-4 | 5.555 0E-1 | 9.59E-3 | 5.674 3E-1 | 6.80E-5 | 5.377 4E-1 | 1.77E-2 | 5.671 6E-1 | 8.17E-4 | 5.675 3E-1 | 5.36E-5 |
LIRCMOP10 | 7.076 9E-1 | 1.09E-4 | 7.065 6E-1 | 1.41E-4 | 7.080 6E-1 | 9.11E-5 | 7.076 0E-1 | 1.03E-4 | 6.866 8E-1 | 4.51E-2 | 7.082 0E-1 | 7.21E-5 | 7.077 5E-1 | 7.93E-5 |
LIRCMOP11 | 6.940 0E-1 | 1.26E-5 | 6.936 9E-1 | 8.83E-5 | 6.940 4E-1 | 8.89E-6 | 6.940 2E-1 | 8.50E-6 | 6.929 3E-1 | 3.87E-3 | 6.940 5E-1 | 4.45E-6 | 6.940 1E-1 | 9.22E-6 |
LIRCMOP12 | 6.202 9E-1 | 2.31E-5 | 6.200 3E-1 | 1.27E-4 | 6.203 6E-1 | 4.98E-6 | 6.203 2E-1 | 1.50E-5 | 6.180 4E-1 | 3.26E-3 | 6.203 1E-1 | 3.17E-6 | 6.203 2E-1 | 1.79E-5 |
LIRCMOP13 | 5.292 9E-1 | 2.37E-3 | 5.562 5E-1 | 3.51E-4 | 5.546 6E-1 | 1.45E-3 | 5.292 1E-1 | 2.46E-3 | 5.544 4E-1 | 1.56E-3 | 5.518 6E-1 | 1.70E-3 | 5.544 9E-1 | 1.73E-3 |
LIRCMOP14 | 5.452 9E-1 | 1.69E-3 | 5.547 1E-1 | 5.55E-4 | 5.538 0E-1 | 1.69E-3 | 5.455 5E-1 | 1.80E-3 | 5.544 1E-1 | 1.56E-3 | 5.511 4E-1 | 1.12E-3 | 5.547 6E-1 | 1.13E-3 |
Tab. 2 Comparison of HV values of DPDSEA and six algorithms on LIRCMOP test set
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/13/1 | 1/12/1 | 3/8/3 | 3/7/4 | 0/7/7 | 5/5/4 | ||||||||
LIRCMOP1 | 2.328 1E-1 | 3.24E-3 | 2.235 5E-1 | 7.02E-3 | 1.906 0E-1 | 2.94E-2 | 2.355 6E-1 | 8.87E-4 | 2.342 6E-1 | 2.51E-3 | 2.371 8E-1 | 3.10E-4 | 2.360 7E-1 | 1.27E-3 |
LIRCMOP2 | 3.503 2E-1 | 6.52E-3 | 3.290 8E-1 | 2.41E-2 | 3.276 8E-1 | 1.51E-2 | 3.572 1E-1 | 1.71E-3 | 3.580 1E-1 | 1.70E-3 | 3.587 8E-1 | 4.84E-4 | 3.588 1E-1 | 5.85E-4 |
LIRCMOP3 | 1.782 6E-1 | 1.53E-2 | 1.985 1E-1 | 5.25E-3 | 1.691 2E-1 | 2.10E-2 | 2.060 7E-1 | 1.89E-3 | 2.026 6E-1 | 3.67E-3 | 2.080 7E-1 | 5.48E-4 | 2.039 9E-1 | 4.17E-3 |
LIRCMOP4 | 2.899 9E-1 | 1.39E-2 | 3.036 9E-1 | 6.05E-3 | 2.660 3E-1 | 3.56E-2 | 3.148 1E-1 | 2.30E-3 | 3.114 6E-1 | 4.74E-3 | 3.160 0E-1 | 1.43E-3 | 3.133 9E-1 | 3.60E-3 |
LIRCMOP5 | 2.920 1E-1 | 9.55E-5 | 2.919 1E-1 | 1.13E-3 | 2.908 9E-1 | 1.22E-3 | 2.921 3E-1 | 8.85E-5 | 1.514 6E-1 | 1.27E-1 | 2.915 7E-1 | 1.05E-3 | 2.921 5E-1 | 8.88E-5 |
LIRCMOP6 | 1.972 1E-1 | 1.05E-4 | 1.973 4E-1 | 7.44E-4 | 1.967 6E-1 | 9.99E-5 | 1.973 2E-1 | 8.65E-5 | 1.338 8E-1 | 8.50E-2 | 1.973 6E-1 | 7.07E-5 | 1.973 8E-1 | 7.81E-5 |
LIRCMOP7 | 2.945 6E-1 | 1.19E-4 | 2.936 5E-1 | 3.47E-4 | 2.944 9E-1 | 4.02E-4 | 2.946 3E-1 | 9.09E-5 | 2.920 1E-1 | 3.07E-3 | 2.937 9E-1 | 3.78E-3 | 2.946 6E-1 | 5.65E-5 |
LIRCMOP8 | 2.945 5E-1 | 1.19E-4 | 2.936 1E-1 | 4.42E-4 | 2.946 4E-1 | 7.42E-5 | 2.946 3E-1 | 1.08E-4 | 2.936 8E-1 | 2.27E-3 | 2.946 4E-1 | 1.09E-4 | 2.946 5E-1 | 9.52E-5 |
LIRCMOP9 | 5.675 4E-1 | 6.53E-5 | 5.662 1E-1 | 1.94E-4 | 5.555 0E-1 | 9.59E-3 | 5.674 3E-1 | 6.80E-5 | 5.377 4E-1 | 1.77E-2 | 5.671 6E-1 | 8.17E-4 | 5.675 3E-1 | 5.36E-5 |
LIRCMOP10 | 7.076 9E-1 | 1.09E-4 | 7.065 6E-1 | 1.41E-4 | 7.080 6E-1 | 9.11E-5 | 7.076 0E-1 | 1.03E-4 | 6.866 8E-1 | 4.51E-2 | 7.082 0E-1 | 7.21E-5 | 7.077 5E-1 | 7.93E-5 |
LIRCMOP11 | 6.940 0E-1 | 1.26E-5 | 6.936 9E-1 | 8.83E-5 | 6.940 4E-1 | 8.89E-6 | 6.940 2E-1 | 8.50E-6 | 6.929 3E-1 | 3.87E-3 | 6.940 5E-1 | 4.45E-6 | 6.940 1E-1 | 9.22E-6 |
LIRCMOP12 | 6.202 9E-1 | 2.31E-5 | 6.200 3E-1 | 1.27E-4 | 6.203 6E-1 | 4.98E-6 | 6.203 2E-1 | 1.50E-5 | 6.180 4E-1 | 3.26E-3 | 6.203 1E-1 | 3.17E-6 | 6.203 2E-1 | 1.79E-5 |
LIRCMOP13 | 5.292 9E-1 | 2.37E-3 | 5.562 5E-1 | 3.51E-4 | 5.546 6E-1 | 1.45E-3 | 5.292 1E-1 | 2.46E-3 | 5.544 4E-1 | 1.56E-3 | 5.518 6E-1 | 1.70E-3 | 5.544 9E-1 | 1.73E-3 |
LIRCMOP14 | 5.452 9E-1 | 1.69E-3 | 5.547 1E-1 | 5.55E-4 | 5.538 0E-1 | 1.69E-3 | 5.455 5E-1 | 1.80E-3 | 5.544 1E-1 | 1.56E-3 | 5.511 4E-1 | 1.12E-3 | 5.547 6E-1 | 1.13E-3 |
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 1/8/0 | 0/9/0 | 1/6/2 | 0/5/4 | 0/6/3 | 0/5/4 | ||||||||
DASCMOP1 | 3.010 7E-3 | 2.20E-4 | 4.663 9E-3 | 1.19E-3 | 2.144 7E-2 | 4.62E-2 | 2.809 5E-3 | 1.34E-4 | 1.752 1E-1 | 2.32E-1 | 3.035 9E-3 | 5.53E-4 | 2.782 0E-3 | 1.89E-4 |
DASCMOP2 | 7.855 4E-3 | 1.94E-2 | 5.561 3E-3 | 2.35E-4 | 1.560 3E-2 | 1.32E-2 | 5.812 1E-3 | 8.78E-3 | 7.917 5E-2 | 3.38E-2 | 1.098 6E-2 | 1.67E-2 | 4.209 6E-3 | 7.96E-5 |
DASCMOP3 | 1.893 5E-2 | 1.77E-3 | 1.940 1E-2 | 2.02E-3 | 1.134 8E-1 | 6.77E-2 | 2.007 3E-2 | 5.47E-3 | 1.754 6E-1 | 8.09E-2 | 1.374 1E-1 | 5.68E-2 | 1.907 6E-2 | 1.25E-3 |
DASCMOP4 | 1.832 0E-3 | 1.23E-3 | 1.811 0E-3 | 7.67E-5 | 1.293 8E-3 | 5.37E-4 | 1.153 6E-3 | 1.54E-5 | 1.152 1E-3 | 3.27E-5 | 1.146 5E-3 | 1.21E-5 | 1.145 7E-3 | 1.51E-5 |
DASCMOP5 | 3.618 5E-3 | 4.20E-4 | 3.774 2E-3 | 2.36E-4 | 3.105 2E-3 | 2.36E-4 | 3.329 0E-3 | 2.45E-4 | 2.779 3E-3 | 6.55E-5 | 2.754 9E-3 | 4.36E-5 | 2.748 4E-3 | 8.97E-5 |
DASCMOP6 | 1.945 8E-2 | 2.26E-4 | 2.106 1E-2 | 2.61E-3 | 1.928 2E-2 | 1.57E-3 | 1.942 1E-2 | 4.51E-3 | 1.873 0E-2 | 2.20E-2 | 1.829 4E-2 | 2.61E-3 | 1.812 4E-2 | 5.74E-3 |
DASCMOP7 | 4.060 1E-2 | 2.57E-3 | 3.833 5E-2 | 6.72E-4 | 3.126 0E-2 | 6.11E-4 | 3.834 8E-2 | 2.18E-3 | 3.175 7E-2 | 7.74E-4 | 3.246 3E-2 | 8.00E-4 | 3.113 6E-2 | 5.12E-4 |
DASCMOP8 | 4.827 9E-2 | 4.31E-3 | 4.744 1E-2 | 1.13E-3 | 4.017 8E-2 | 8.05E-4 | 4.644 2E-2 | 6.22E-3 | 4.090 6E-2 | 8.55E-4 | 4.199 4E-2 | 8.82E-4 | 4.075 8E-2 | 7.70E-4 |
DASCMOP9 | 4.122 5E-2 | 1.03E-3 | 4.941 0E-2 | 1.76E-3 | 4.278 7E-2 | 2.09E-3 | 4.113 7E-2 | 1.03E-3 | 4.160 0E-2 | 1.09E-3 | 4.204 6E-2 | 8.95E-4 | 4.024 6E-2 | 9.93E-4 |
Tab. 3 Comparison of IGD values of DPDSEA and six algorithms on DASCMOP test set
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 1/8/0 | 0/9/0 | 1/6/2 | 0/5/4 | 0/6/3 | 0/5/4 | ||||||||
DASCMOP1 | 3.010 7E-3 | 2.20E-4 | 4.663 9E-3 | 1.19E-3 | 2.144 7E-2 | 4.62E-2 | 2.809 5E-3 | 1.34E-4 | 1.752 1E-1 | 2.32E-1 | 3.035 9E-3 | 5.53E-4 | 2.782 0E-3 | 1.89E-4 |
DASCMOP2 | 7.855 4E-3 | 1.94E-2 | 5.561 3E-3 | 2.35E-4 | 1.560 3E-2 | 1.32E-2 | 5.812 1E-3 | 8.78E-3 | 7.917 5E-2 | 3.38E-2 | 1.098 6E-2 | 1.67E-2 | 4.209 6E-3 | 7.96E-5 |
DASCMOP3 | 1.893 5E-2 | 1.77E-3 | 1.940 1E-2 | 2.02E-3 | 1.134 8E-1 | 6.77E-2 | 2.007 3E-2 | 5.47E-3 | 1.754 6E-1 | 8.09E-2 | 1.374 1E-1 | 5.68E-2 | 1.907 6E-2 | 1.25E-3 |
DASCMOP4 | 1.832 0E-3 | 1.23E-3 | 1.811 0E-3 | 7.67E-5 | 1.293 8E-3 | 5.37E-4 | 1.153 6E-3 | 1.54E-5 | 1.152 1E-3 | 3.27E-5 | 1.146 5E-3 | 1.21E-5 | 1.145 7E-3 | 1.51E-5 |
DASCMOP5 | 3.618 5E-3 | 4.20E-4 | 3.774 2E-3 | 2.36E-4 | 3.105 2E-3 | 2.36E-4 | 3.329 0E-3 | 2.45E-4 | 2.779 3E-3 | 6.55E-5 | 2.754 9E-3 | 4.36E-5 | 2.748 4E-3 | 8.97E-5 |
DASCMOP6 | 1.945 8E-2 | 2.26E-4 | 2.106 1E-2 | 2.61E-3 | 1.928 2E-2 | 1.57E-3 | 1.942 1E-2 | 4.51E-3 | 1.873 0E-2 | 2.20E-2 | 1.829 4E-2 | 2.61E-3 | 1.812 4E-2 | 5.74E-3 |
DASCMOP7 | 4.060 1E-2 | 2.57E-3 | 3.833 5E-2 | 6.72E-4 | 3.126 0E-2 | 6.11E-4 | 3.834 8E-2 | 2.18E-3 | 3.175 7E-2 | 7.74E-4 | 3.246 3E-2 | 8.00E-4 | 3.113 6E-2 | 5.12E-4 |
DASCMOP8 | 4.827 9E-2 | 4.31E-3 | 4.744 1E-2 | 1.13E-3 | 4.017 8E-2 | 8.05E-4 | 4.644 2E-2 | 6.22E-3 | 4.090 6E-2 | 8.55E-4 | 4.199 4E-2 | 8.82E-4 | 4.075 8E-2 | 7.70E-4 |
DASCMOP9 | 4.122 5E-2 | 1.03E-3 | 4.941 0E-2 | 1.76E-3 | 4.278 7E-2 | 2.09E-3 | 4.113 7E-2 | 1.03E-3 | 4.160 0E-2 | 1.09E-3 | 4.204 6E-2 | 8.95E-4 | 4.024 6E-2 | 9.93E-4 |
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 1/7/1 | 0/9/0 | 1/6/2 | 0/4/5 | 2/6/1 | 3/5/1 | ||||||||
DASCMOP1 | 2.126 2E-1 | 2.97E-4 | 2.004 2E-1 | 3.58E-3 | 2.058 9E-1 | 1.18E-2 | 2.127 5E-1 | 3.20E-4 | 1.658 7E-1 | 5.36E-2 | 2.122 7E-1 | 9.35E-4 | 2.129 1E-1 | 1.96E-4 |
DASCMOP2 | 3.537 5E-1 | 7.80E-3 | 3.541 9E-1 | 1.72E-4 | 3.471 2E-1 | 7.92E-3 | 3.544 5E-1 | 4.53E-3 | 3.153 3E-1 | 1.13E-2 | 3.526 6E-1 | 6.41E-3 | 3.552 7E-1 | 6.36E-5 |
DASCMOP3 | 3.122 0E-1 | 1.66E-4 | 3.116 1E-1 | 4.63E-4 | 2.829 0E-1 | 1.66E-2 | 3.115 9E-1 | 4.36E-3 | 2.617 7E-1 | 1.94E-2 | 2.661 4E-1 | 1.61E-2 | 3.122 6E-1 | 1.28E-4 |
DASCMOP4 | 2.034 6E-1 | 1.59E-3 | 2.039 7E-1 | 7.83E-5 | 2.038 3E-1 | 1.54E-3 | 2.042 8E-1 | 7.83E-5 | 2.043 2E-1 | 8.74E-5 | 2.043 3E-1 | 4.58E-5 | 2.043 0E-1 | 6.43E-5 |
DASCMOP5 | 3.504 5E-1 | 4.07E-4 | 3.504 6E-1 | 2.42E-4 | 3.512 2E-1 | 2.80E-4 | 3.506 2E-1 | 2.75E-4 | 3.515 3E-1 | 1.33E-4 | 3.516 1E-1 | 1.16E-4 | 3.516 3E-1 | 1.47E-4 |
DASCMOP6 | 3.121 0E-1 | 2.73E-4 | 3.099 0E-1 | 2.00E-3 | 3.114 8E-1 | 2.26E-3 | 3.115 6E-1 | 3.51E-3 | 3.104 2E-1 | 8.30E-3 | 3.124 3E-1 | 9.01E-5 | 3.115 7E-1 | 3.88E-3 |
DASCMOP7 | 2.811 0E-1 | 1.11E-3 | 2.830 4E-1 | 1.44E-3 | 2.882 8E-1 | 4.13E-4 | 2.823 8E-1 | 1.23E-3 | 2.873 8E-1 | 3.08E-4 | 2.876 7E-1 | 3.72E-4 | 2.883 0E-1 | 3.68E-4 |
DASCMOP8 | 2.013 8E-1 | 1.46E-3 | 2.059 7E-1 | 7.26E-4 | 2.067 9E-1 | 6.25E-4 | 2.015 7E-1 | 3.81E-3 | 2.061 9E-1 | 4.91E-4 | 2.065 2E-1 | 4.53E-4 | 2.068 6E-1 | 5.33E-4 |
DASCMOP9 | 2.045 4E-1 | 3.90E-4 | 2.038 8E-1 | 5.75E-4 | 2.060 7E-1 | 4.19E-4 | 2.046 4E-1 | 5.86E-4 | 2.063 2E-1 | 4.63E-4 | 2.062 6E-1 | 3.67E-4 | 2.049 6E-1 | 4.49E-4 |
Tab. 4 Comparison of HV values of DPDSEA and six algorithms on DASCMOP test set
测试问题 | CMOES | dp-ACS | c-DPEA | CAEAD | BiCo | DDCMOEA | DPDSEA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 1/7/1 | 0/9/0 | 1/6/2 | 0/4/5 | 2/6/1 | 3/5/1 | ||||||||
DASCMOP1 | 2.126 2E-1 | 2.97E-4 | 2.004 2E-1 | 3.58E-3 | 2.058 9E-1 | 1.18E-2 | 2.127 5E-1 | 3.20E-4 | 1.658 7E-1 | 5.36E-2 | 2.122 7E-1 | 9.35E-4 | 2.129 1E-1 | 1.96E-4 |
DASCMOP2 | 3.537 5E-1 | 7.80E-3 | 3.541 9E-1 | 1.72E-4 | 3.471 2E-1 | 7.92E-3 | 3.544 5E-1 | 4.53E-3 | 3.153 3E-1 | 1.13E-2 | 3.526 6E-1 | 6.41E-3 | 3.552 7E-1 | 6.36E-5 |
DASCMOP3 | 3.122 0E-1 | 1.66E-4 | 3.116 1E-1 | 4.63E-4 | 2.829 0E-1 | 1.66E-2 | 3.115 9E-1 | 4.36E-3 | 2.617 7E-1 | 1.94E-2 | 2.661 4E-1 | 1.61E-2 | 3.122 6E-1 | 1.28E-4 |
DASCMOP4 | 2.034 6E-1 | 1.59E-3 | 2.039 7E-1 | 7.83E-5 | 2.038 3E-1 | 1.54E-3 | 2.042 8E-1 | 7.83E-5 | 2.043 2E-1 | 8.74E-5 | 2.043 3E-1 | 4.58E-5 | 2.043 0E-1 | 6.43E-5 |
DASCMOP5 | 3.504 5E-1 | 4.07E-4 | 3.504 6E-1 | 2.42E-4 | 3.512 2E-1 | 2.80E-4 | 3.506 2E-1 | 2.75E-4 | 3.515 3E-1 | 1.33E-4 | 3.516 1E-1 | 1.16E-4 | 3.516 3E-1 | 1.47E-4 |
DASCMOP6 | 3.121 0E-1 | 2.73E-4 | 3.099 0E-1 | 2.00E-3 | 3.114 8E-1 | 2.26E-3 | 3.115 6E-1 | 3.51E-3 | 3.104 2E-1 | 8.30E-3 | 3.124 3E-1 | 9.01E-5 | 3.115 7E-1 | 3.88E-3 |
DASCMOP7 | 2.811 0E-1 | 1.11E-3 | 2.830 4E-1 | 1.44E-3 | 2.882 8E-1 | 4.13E-4 | 2.823 8E-1 | 1.23E-3 | 2.873 8E-1 | 3.08E-4 | 2.876 7E-1 | 3.72E-4 | 2.883 0E-1 | 3.68E-4 |
DASCMOP8 | 2.013 8E-1 | 1.46E-3 | 2.059 7E-1 | 7.26E-4 | 2.067 9E-1 | 6.25E-4 | 2.015 7E-1 | 3.81E-3 | 2.061 9E-1 | 4.91E-4 | 2.065 2E-1 | 4.53E-4 | 2.068 6E-1 | 5.33E-4 |
DASCMOP9 | 2.045 4E-1 | 3.90E-4 | 2.038 8E-1 | 5.75E-4 | 2.060 7E-1 | 4.19E-4 | 2.046 4E-1 | 5.86E-4 | 2.063 2E-1 | 4.63E-4 | 2.062 6E-1 | 3.67E-4 | 2.049 6E-1 | 4.49E-4 |
测试问题 | DPDSEA1 | DPDSEA2 | DPDSEA | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/8/1 | 0/7/2 | ||||
DASCMOP1 | 3.087 8E-1 | 2.87E-1 | 9.808 1E-2 | 1.80E-1 | 2.782 0E-3 | 1.89E-4 |
DASCMOP2 | 1.095 9E-1 | 3.51E-2 | 8.612 7E-2 | 3.71E-2 | 4.209 6E-3 | 7.96E-5 |
DASCMOP3 | 1.766 4E-1 | 5.32E-2 | 2.410 3E-1 | 4.83E-2 | 1.907 6E-2 | 1.25E-3 |
DASCMOP4 | 1.625 7E-3 | 8.06E-4 | 1.365 7E-3 | 2.46E-4 | 1.145 7E-3 | 1.51E-5 |
DASCMOP5 | 3.625 0E-3 | 4.33E-4 | 3.034 9E-3 | 1.60E-4 | 2.748 4E-3 | 8.97E-5 |
DASCMOP6 | 1.965 8E-2 | 9.00E-4 | 1.938 5E-2 | 4.51E-3 | 1.812 4E-2 | 5.74E-3 |
DASCMOP7 | 4.499 8E-2 | 4.74E-3 | 3.789 4E-2 | 3.69E-3 | 3.113 6E-2 | 5.12E-4 |
DASCMOP8 | 5.065 5E-2 | 5.48E-3 | 4.555 2E-2 | 5.83E-3 | 4.075 8E-2 | 7.70E-4 |
DASCMOP9 | 4.134 9E-2 | 9.26E-4 | 4.069 3E-2 | 9.08E-4 | 4.024 6E-2 | 9.93E-4 |
Tab. 5 Comparison of IGD values of DPDSEA and its two variants on DASCMOP test set
测试问题 | DPDSEA1 | DPDSEA2 | DPDSEA | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/8/1 | 0/7/2 | ||||
DASCMOP1 | 3.087 8E-1 | 2.87E-1 | 9.808 1E-2 | 1.80E-1 | 2.782 0E-3 | 1.89E-4 |
DASCMOP2 | 1.095 9E-1 | 3.51E-2 | 8.612 7E-2 | 3.71E-2 | 4.209 6E-3 | 7.96E-5 |
DASCMOP3 | 1.766 4E-1 | 5.32E-2 | 2.410 3E-1 | 4.83E-2 | 1.907 6E-2 | 1.25E-3 |
DASCMOP4 | 1.625 7E-3 | 8.06E-4 | 1.365 7E-3 | 2.46E-4 | 1.145 7E-3 | 1.51E-5 |
DASCMOP5 | 3.625 0E-3 | 4.33E-4 | 3.034 9E-3 | 1.60E-4 | 2.748 4E-3 | 8.97E-5 |
DASCMOP6 | 1.965 8E-2 | 9.00E-4 | 1.938 5E-2 | 4.51E-3 | 1.812 4E-2 | 5.74E-3 |
DASCMOP7 | 4.499 8E-2 | 4.74E-3 | 3.789 4E-2 | 3.69E-3 | 3.113 6E-2 | 5.12E-4 |
DASCMOP8 | 5.065 5E-2 | 5.48E-3 | 4.555 2E-2 | 5.83E-3 | 4.075 8E-2 | 7.70E-4 |
DASCMOP9 | 4.134 9E-2 | 9.26E-4 | 4.069 3E-2 | 9.08E-4 | 4.024 6E-2 | 9.93E-4 |
测试问题 | DPDSEA1 | DPDSEA2 | DPDSEA | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/8/1 | 0/7/2 | ||||
DASCMOP1 | 1.360 9E-1 | 5.97E-2 | 1.858 7E-1 | 4.03E-2 | 2.129 1E-1 | 1.96E-4 |
DASCMOP2 | 3.062 7E-1 | 1.16E-2 | 3.142 7E-1 | 1.11E-2 | 3.552 7E-1 | 6.36E-5 |
DASCMOP3 | 2.635 4E-1 | 9.71E-3 | 2.566 7E-1 | 1.35E-2 | 3.122 6E-1 | 1.28E-4 |
DASCMOP4 | 2.037 4E-1 | 3.69E-4 | 2.039 0E-1 | 2.69E-4 | 2.043 0E-1 | 6.43E-5 |
DASCMOP5 | 3.503 9E-1 | 4.21E-4 | 3.510 9E-1 | 2.15E-4 | 3.516 3E-1 | 1.47E-4 |
DASCMOP6 | 3.118 2E-1 | 8.79E-4 | 3.116 1E-1 | 3.47E-3 | 3.115 7E-1 | 3.88E-3 |
DASCMOP7 | 2.789 6E-1 | 2.08E-3 | 2.823 5E-1 | 2.14E-3 | 2.883 0E-1 | 3.68E-4 |
DASCMOP8 | 2.005 6E-1 | 1.78E-3 | 2.018 6E-1 | 2.58E-3 | 2.068 6E-1 | 5.33E-4 |
DASCMOP9 | 2.043 6E-1 | 5.04E-4 | 2.050 3E-1 | 4.14E-4 | 2.049 6E-1 | 4.49E-4 |
Tab. 6 Comparison of HV values of DPDSEA and its two variants on DASCMOP test set
测试问题 | DPDSEA1 | DPDSEA2 | DPDSEA | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
+/-/= | 0/8/1 | 0/7/2 | ||||
DASCMOP1 | 1.360 9E-1 | 5.97E-2 | 1.858 7E-1 | 4.03E-2 | 2.129 1E-1 | 1.96E-4 |
DASCMOP2 | 3.062 7E-1 | 1.16E-2 | 3.142 7E-1 | 1.11E-2 | 3.552 7E-1 | 6.36E-5 |
DASCMOP3 | 2.635 4E-1 | 9.71E-3 | 2.566 7E-1 | 1.35E-2 | 3.122 6E-1 | 1.28E-4 |
DASCMOP4 | 2.037 4E-1 | 3.69E-4 | 2.039 0E-1 | 2.69E-4 | 2.043 0E-1 | 6.43E-5 |
DASCMOP5 | 3.503 9E-1 | 4.21E-4 | 3.510 9E-1 | 2.15E-4 | 3.516 3E-1 | 1.47E-4 |
DASCMOP6 | 3.118 2E-1 | 8.79E-4 | 3.116 1E-1 | 3.47E-3 | 3.115 7E-1 | 3.88E-3 |
DASCMOP7 | 2.789 6E-1 | 2.08E-3 | 2.823 5E-1 | 2.14E-3 | 2.883 0E-1 | 3.68E-4 |
DASCMOP8 | 2.005 6E-1 | 1.78E-3 | 2.018 6E-1 | 2.58E-3 | 2.068 6E-1 | 5.33E-4 |
DASCMOP9 | 2.043 6E-1 | 5.04E-4 | 2.050 3E-1 | 4.14E-4 | 2.049 6E-1 | 4.49E-4 |
算法 | 平均值 | 标准差 |
---|---|---|
CMOES | 4.039 6E-3 | 3.68E-5 |
dp-ACS | 4.046 7E-3 | 6.61E-5 |
c-DPEA | 4.192 4E-3 | 4.34E-5 |
CAEAD | 4.199 7E-3 | 4.83E-5 |
BiCo | 4.154 2E-3 | 8.87E-5 |
DDCMOEA | 4.118 2E-3 | 3.96E-5 |
DPDSEA | 4.221 7E-3 | 3.59E-5 |
Tab. 7 Comparison of HV values of DPDSEA and six algorithms on car side impact problem
算法 | 平均值 | 标准差 |
---|---|---|
CMOES | 4.039 6E-3 | 3.68E-5 |
dp-ACS | 4.046 7E-3 | 6.61E-5 |
c-DPEA | 4.192 4E-3 | 4.34E-5 |
CAEAD | 4.199 7E-3 | 4.83E-5 |
BiCo | 4.154 2E-3 | 8.87E-5 |
DDCMOEA | 4.118 2E-3 | 3.96E-5 |
DPDSEA | 4.221 7E-3 | 3.59E-5 |
[1] | CHEN G, ZHANG W, QI L, et al. Constrained multi-objective trans-media maneuver trajectory optimization for morphing unmanned aerial-underwater vehicles[J]. Ocean Engineering, 2024, 299: No.117380. |
[2] | ZHANG Z, ZHANG H, TIAN Y, et al. Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system[J]. Swarm and Evolutionary Computation, 2024, 87: No.101525. |
[3] | HE X, LV C. Toward personalized decision making for autonomous vehicles: a constrained multi-objective reinforcement learning technique[J]. Transportation Research Part C: Emerging Technologies, 2023, 156: No.104352. |
[4] | 陈少淼,陈瑞,梁伟,等. 面向复杂约束优化问题的进化算法综述[J]. 软件学报, 2023, 34(2): 565-581. |
CHEN S M, CHEN R, LIANG W, et al. Overview of evolutionary algorithms for complex constrained optimization problems[J]. Journal of Software, 2023, 34(2): 565-581. | |
[5] | 朱亚文,周红标,李杨,等. 约束多目标进化算法研究进展[J]. 计算机应用研究, 2022, 39(9): 2582-2590, 2602. |
ZHU Y W, ZHOU H B, LI Y, et al. Research progress of constrained multi-objective evolutionary algorithms[J]. Application Research of Computers, 2022, 39(9): 2582-2590, 2602. | |
[6] | 李笠,李广鹏,常亮,等. 约束进化算法及其应用研究综述[J]. 计算机科学, 2021, 48(4): 1-13. |
LI L, LI G P, CHANG L, et al. Survey of constrained evolutionary algorithms and their applications[J]. Computer Science, 2021, 48(4): 1-13. | |
[7] | MA Z, WANG Y. Shift-based penalty for evolutionary constrained multiobjective optimization and its application[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 18-30. |
[8] | WANG B C, LI H X, LI J P, et al. Composite differential evolution for constrained evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1482-1495. |
[9] | GU Q, BAI J, LI X, et al. A constrained multi-objective evolutionary algorithm based on decomposition with improved constrained dominance principle[J]. Swarm and Evolutionary Computation, 2022, 75: No.101162. |
[10] | SONG S, ZHANG K, ZHANG L, et al. A dual-population algorithm based on self-adaptive epsilon method for constrained multi-objective optimization[J]. Information Sciences, 2024, 655: No.119906. |
[11] | GU Q, WANG Q, XIONG N N, et al. Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems[J]. Complex and Intelligent Systems, 2022, 8(4): 2699-2718. |
[12] | PENG C, LIU H L, GU F. An evolutionary algorithm with directed weights for constrained multi-objective optimization[J]. Applied Soft Computing, 2017, 60: 613-622. |
[13] | URIBE L, LARA A, SCHÜTZE O. On the efficient computation and use of multi-objective descent directions within constrained MOEAs[J]. Swarm and Evolutionary Computation, 2020, 52: No.100617. |
[14] | TIAN Y, ZHANG T, XIAO J, et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 102-116. |
[15] | FAN Z, LI W, CAI X, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 665-679. |
[16] | LIU Z Z, WANG B C, TANG K. Handling constrained multiobjective optimization problems via bidirectional coevolution[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10163-10176. |
[17] | MING M, TRIVEDI A, WANG R, et al. A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 739-753. |
[18] | SUN R, ZOU J, LIU Y, et al. A multistage algorithm for solving multiobjective optimization problems with multiconstraints[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1207-1219. |
[19] | MING F, GONG W, JIN Y. Even search in a promising region for constrained multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 474-486. |
[20] | YANG K, ZHENG J, ZOU J, et al. A dual-population evolutionary algorithm based on adaptive constraint strength for constrained multi-objective optimization[J]. Swarm and Evolutionary Computation, 2023, 77: No.101247. |
[21] | ZOU J, SUN R, YANG S, et al. A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems[J]. Information Sciences, 2021, 579: 89-102. |
[22] | MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560: 68-91. |
[23] | LIANG J, BAN X, YU K, et al. A survey on evolutionary constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 201-221. |
[24] | MING M, WANG R, ISHIBUCHI H, et al. A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1129-1143. |
[25] | TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: a Matlab platform for evolutionary multi-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
[26] | FAN Z, LI W, CAI X, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23(23): 12491-12510. |
[27] | FAN Z, LI W, CAI X, et al. Difficulty adjustable and scalable constrained multiobjective test problem toolkit[J]. Evolutionary Computation, 2020, 28(3): 339-378. |
[28] | BOSMAN P A N, THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174-188. |
[29] | ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. |
[30] | DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1995, 9(2): 115-148. |
[31] | DEB K, GOYAL M. A combined Genetic Adaptive Search (GeneAS) for engineering design[J]. Journal of Computer Science and Informatics, 1996, 26: 30-45. |
[32] | LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. |
[33] | JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part Ⅱ: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622. |
[1] | Hansong ZHANG, Yichao HE, Fei SUN, Guoxin CHEN, Ju CHEN. Improved ring theory-based evolutionary algorithm with new repair optimization operator for solving multi-dimensional knapsack problem [J]. Journal of Computer Applications, 2025, 45(5): 1595-1604. |
[2] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[3] | Maojiang TIAN, Mingke CHEN, Wei DU, Wenli DU. Two-stage differential grouping method for large-scale overlapping problems [J]. Journal of Computer Applications, 2024, 44(5): 1348-1354. |
[4] | Wanting ZHANG, Wenli DU, Wei DU. Multi-timescale cooperative evolutionary algorithm for large-scale crude oil scheduling [J]. Journal of Computer Applications, 2024, 44(5): 1355-1363. |
[5] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[6] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[7] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[8] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[9] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[10] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[11] | Erchao LI, Yanli CHENG. Dynamic multi-objective optimization algorithm based on weight vector clustering [J]. Journal of Computer Applications, 2023, 43(7): 2226-2236. |
[12] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[13] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[14] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[15] | Kuineng CHEN, Xiaofang YUAN. Multi-objective hybrid evolutionary algorithm for solving open-shop scheduling problem with controllable processing time [J]. Journal of Computer Applications, 2022, 42(8): 2617-2627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||