Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3187-3194.DOI: 10.11772/j.issn.1001-9081.2024101445
• Artificial intelligence • Previous Articles
Shixiong KUANG, Junbo YAO, Jiawei LU, Qibing WANG, Gang XIAO()
Received:
2024-10-14
Revised:
2024-12-30
Online:
2025-01-06
Published:
2025-10-10
Contact:
Gang XIAO
About author:
KUANG Shixiong, born in 2000, M. S. candidate. His research interests include data augmentation, pattern recognition.Supported by:
通讯作者:
肖刚
作者简介:
况世雄(2000—),男,湖北武汉人,硕士研究生,主要研究方向:数据增强、模式识别基金资助:
CLC Number:
Shixiong KUANG, Junbo YAO, Jiawei LU, Qibing WANG, Gang XIAO. Data augmentation method for abnormal elevator passenger behaviors based on dynamic graph convolutional network[J]. Journal of Computer Applications, 2025, 45(10): 3187-3194.
况世雄, 姚俊波, 陆佳炜, 王琪冰, 肖刚. 基于动态图卷积网络的电梯乘客异常行为数据增强方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3187-3194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101445
增强方法 | MPJPE | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指引 | 讨论 | 吃饭 | 问候 | 打电话 | 拍照 | 摆姿势 | 购物 | 坐下 | 坐着 | 抽烟 | 等待 | 遛狗 | 走路 | 一起走 | 平均 | |
无 | 45.2 | 50.8 | 48.0 | 50.0 | 54.9 | 65.0 | 48.2 | 47.1 | 60.2 | 70.0 | 51.6 | 48.7 | 54.1 | 39.7 | 43.1 | 51.8 |
Skelbumentations | 41.9 | 45.9 | 43.2 | 47.5 | 51.3 | 57.8 | 43.9 | 45.7 | 57.0 | 61.9 | 47.7 | 46.8 | 49.0 | 34.6 | 42.8 | 47.8 |
JMDA | 40.0 | 46.8 | 41.7 | 45.8 | 49.4 | 58.4 | 41.4 | 46.0 | 53.4 | 59.3 | 47.8 | 44.9 | 48.3 | 31.8 | 43.0 | 46.5 |
DDPMs | 37.9 | 44.2 | 42.1 | 46.1 | 48.9 | 56.5 | 40.2 | 44.3 | 52.8 | 57.9 | 45.5 | 45.8 | 44.6 | 29.9 | 39.7 | 45.1 |
DGCN-BA | 37.3 | 43.1 | 42.9 | 43.9 | 47.4 | 57.9 | 37.2 | 43.9 | 50.0 | 53.2 | 44.3 | 42.0 | 45.1 | 26.8 | 38.6 | 43.6 |
Tab. 1 Pose estimation results of different data augmentation methods based on GraFormer
增强方法 | MPJPE | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指引 | 讨论 | 吃饭 | 问候 | 打电话 | 拍照 | 摆姿势 | 购物 | 坐下 | 坐着 | 抽烟 | 等待 | 遛狗 | 走路 | 一起走 | 平均 | |
无 | 45.2 | 50.8 | 48.0 | 50.0 | 54.9 | 65.0 | 48.2 | 47.1 | 60.2 | 70.0 | 51.6 | 48.7 | 54.1 | 39.7 | 43.1 | 51.8 |
Skelbumentations | 41.9 | 45.9 | 43.2 | 47.5 | 51.3 | 57.8 | 43.9 | 45.7 | 57.0 | 61.9 | 47.7 | 46.8 | 49.0 | 34.6 | 42.8 | 47.8 |
JMDA | 40.0 | 46.8 | 41.7 | 45.8 | 49.4 | 58.4 | 41.4 | 46.0 | 53.4 | 59.3 | 47.8 | 44.9 | 48.3 | 31.8 | 43.0 | 46.5 |
DDPMs | 37.9 | 44.2 | 42.1 | 46.1 | 48.9 | 56.5 | 40.2 | 44.3 | 52.8 | 57.9 | 45.5 | 45.8 | 44.6 | 29.9 | 39.7 | 45.1 |
DGCN-BA | 37.3 | 43.1 | 42.9 | 43.9 | 47.4 | 57.9 | 37.2 | 43.9 | 50.0 | 53.2 | 44.3 | 42.0 | 45.1 | 26.8 | 38.6 | 43.6 |
方法 | 3DHP | MuPoTS-3D | ||||||
---|---|---|---|---|---|---|---|---|
MPJPE | PA-MPJPE | MPJPE | PA-MPJPE | |||||
未使用 | 使用 | 未使用 | 使用 | 未使用 | 使用 | 未使用 | 使用 | |
SemGCN | 110.3 | 99.7 | 74.2 | 66.5 | 160.3 | 148.7 | 112.0 | 102.6 |
Baseline | 102.5 | 91.8 | 72.9 | 67.4 | 129.6 | 113.5 | 78.7 | 69.3 |
TCN | 100.3 | 90.9 | 71.5 | 63.1 | 135.2 | 118.9 | 87.1 | 76.7 |
Tab. 2 Pose estimation results before and after using DGCN-BA on various methods
方法 | 3DHP | MuPoTS-3D | ||||||
---|---|---|---|---|---|---|---|---|
MPJPE | PA-MPJPE | MPJPE | PA-MPJPE | |||||
未使用 | 使用 | 未使用 | 使用 | 未使用 | 使用 | 未使用 | 使用 | |
SemGCN | 110.3 | 99.7 | 74.2 | 66.5 | 160.3 | 148.7 | 112.0 | 102.6 |
Baseline | 102.5 | 91.8 | 72.9 | 67.4 | 129.6 | 113.5 | 78.7 | 69.3 |
TCN | 100.3 | 90.9 | 71.5 | 63.1 | 135.2 | 118.9 | 87.1 | 76.7 |
方法 | Human3.6M | |||
---|---|---|---|---|
MPJPE | PA-MPJPE | |||
实验组A | 51.0 | 36.7 | ||
实验组B | √ | 48.4 | 33.2 | |
实验组C | √ | 45.2 | 31.0 | |
DGCN-BA | √ | √ | 43.6 | 29.8 |
Tab. 3 Performance of different combinations of dynamic spatio-temporal graph convolution modules
方法 | Human3.6M | |||
---|---|---|---|---|
MPJPE | PA-MPJPE | |||
实验组A | 51.0 | 36.7 | ||
实验组B | √ | 48.4 | 33.2 | |
实验组C | √ | 45.2 | 31.0 | |
DGCN-BA | √ | √ | 43.6 | 29.8 |
方法 | Ⅰ | Ⅱ | Ⅲ | Human3.6M | MuPoTS-3D | ||
---|---|---|---|---|---|---|---|
MPJPE | PA-MPJPE | MPJPE | PA-MPJPE | ||||
实验组D | 51.8 | 37.1 | 82.7 | 69.1 | |||
实验组E | √ | √ | 45.5 | 30.8 | 76.3 | 63.2 | |
实验组F | √ | √ | 47.0 | 32.7 | 78.1 | 65.0 | |
实验组G | √ | √ | 46.5 | 31.6 | 74.7 | 60.6 | |
DGCN-BA | √ | √ | √ | 43.6 | 29.8 | 72.9 | 59.5 |
Tab. 4 Performance of different combinations of pose augmentation modules
方法 | Ⅰ | Ⅱ | Ⅲ | Human3.6M | MuPoTS-3D | ||
---|---|---|---|---|---|---|---|
MPJPE | PA-MPJPE | MPJPE | PA-MPJPE | ||||
实验组D | 51.8 | 37.1 | 82.7 | 69.1 | |||
实验组E | √ | √ | 45.5 | 30.8 | 76.3 | 63.2 | |
实验组F | √ | √ | 47.0 | 32.7 | 78.1 | 65.0 | |
实验组G | √ | √ | 46.5 | 31.6 | 74.7 | 60.6 | |
DGCN-BA | √ | √ | √ | 43.6 | 29.8 | 72.9 | 59.5 |
方法 | 准确率 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
跌倒 | 扒门 | 踹门 | 暴力事件 | 平均 | ||||||
原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | |
文献[ | 96.2 | 97.9 | 93.4 | 95.1 | 91.9 | 93.6 | 89.3 | 92.2 | 92.7 | 94.7 |
文献[ | 96.9 | 98.1 | 95.1 | 96.0 | 94.7 | 96.2 | 90.9 | 94.5 | 94.4 | 96.2 |
文献[ | 97.9 | 99.0 | 95.4 | 96.5 | 97.8 | 98.3 | 95.7 | 97.0 | 96.7 | 97.7 |
Tab. 5 Behavior recognition results before and after using data augmentation framework on various methods
方法 | 准确率 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
跌倒 | 扒门 | 踹门 | 暴力事件 | 平均 | ||||||
原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | 原始 | 增强后 | |
文献[ | 96.2 | 97.9 | 93.4 | 95.1 | 91.9 | 93.6 | 89.3 | 92.2 | 92.7 | 94.7 |
文献[ | 96.9 | 98.1 | 95.1 | 96.0 | 94.7 | 96.2 | 90.9 | 94.5 | 94.4 | 96.2 |
文献[ | 97.9 | 99.0 | 95.4 | 96.5 | 97.8 | 98.3 | 95.7 | 97.0 | 96.7 | 97.7 |
[1] | 张连学,杜平虎.试谈电梯使用环节及相关环节的安全责任[J]. 中国电梯, 2020, 31(13):40-43. |
ZHANG L X, DU P H. Discussion on safety responsibility of elevator use and related links[J]. China Elevator, 2020, 31(13): 40-43. | |
[2] | ARROYO R, YEBES J J, BERGASA L M, et al. Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls[J]. Expert systems with Applications, 2015, 42(21): 7991-8005. |
[3] | 吕蕾,庞辰. 基于图卷积网络的人体骨架行为识别方法综述[J]. 山东师范大学学报(自然科学版), 2024, 39(3):210-232. |
LYU L, PANG C. A review of human skeleton action recognition methods based on graph convolutional network[J]. Journal of Shandong Normal University (Natural Sciences Edition), 2024, 39(3): 210-232. | |
[4] | REN B, LIU M, DING R, et al. A survey on 3D skeleton-based action recognition using learning method[J]. Cyborg and Bionic Systems, 2024, 5: No.0100. |
[5] | XU Q, ZHENG W, SONG Y, et al. Scene image and human skeleton-based dual-stream human action recognition[J]. Pattern Recognition Letters, 2021, 148: 136-145. |
[6] | DAI C, LU S, LIU C, et al. A light-weight skeleton human action recognition model with knowledge distillation for edge intelligent surveillance applications[J]. Applied Soft Computing, 2024, 151: No.111166. |
[7] | YANG M, WU C, GUO Y, et al. Transformer-based deep learning model and video dataset for unsafe action identification in construction projects[J]. Automation in Construction, 2023, 146: No.104703. |
[8] | ALI R, HUTOMO I S, VAN L D, et al. A skeleton-based view-invariant framework for human fall detection in an elevator[C]// Proceedings of the 2022 IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2022: 1-6. |
[9] | LAN S, JIANG S, LI G. An elevator passenger behavior recognition method based on two-stream convolution neural network[J]. Journal of Physics: Conference Series, 2021, 1955: No.012089. |
[10] | YANG J, WAN L, XU W, et al. 3D human pose estimation from a single image via exemplar augmentation[J]. Journal of Visual Communication Image Representation, 2019, 59: 371-379. |
[11] | DU S, YUAN Z, LAI P, et al. JoyPose: jointly learning evolutionary data augmentation and anatomy-aware global-local representation for 3D human pose estimation[J]. Pattern Recognition Letters, 2024, 147: No.110116. |
[12] | ALHAIJA H ABU, MUSTIKOVELA S K, MESCHEDER L, et al. Augmented reality meets computer vision: efficient data generation for urban driving scenes[J]. International Journal of Computer Vision, 2018, 126(9): 961-972. |
[13] | PURKAIT P, ZHAO C, ZACH C. SPP-Net: deep absolute pose regression with synthetic views[EB/OL]. [2024-10-11].. |
[14] | LI S, KE L, PRATAMA K, et al. Cascaded deep monocular 3D human pose estimation with evolutionary training data[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6172-6182. |
[15] | GONG K, ZHANG J, FENG J. PoseAug: a differentiable pose augmentation framework for 3D human pose estimation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8571-8580. |
[16] | ZHANG C, ZHU L, ZHANG S, et al. PAC-GAN: an effective pose augmentation scheme for unsupervised cross-view person re-identification[J]. Neurocomputing, 2020, 387: 22-39. |
[17] | SHAH A, ROY A, SHAH K, et al. HaLP: hallucinating latent positives for skeleton-based self-supervised learning of actions[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18846-18856. |
[18] | ZHANG J, WANG Y, ZHOU Z, et al. Learning dynamical human-joint affinity for 3D pose estimation in videos[J]. IEEE Transactions on Image Processing, 2021, 30: 7914-7925. |
[19] | WANDT B, ROSENHAHN B. RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7774-7783. |
[20] | AKHTER I, BLACK M J. Pose-conditioned joint angle limits for 3D human pose reconstruction[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1446-1455. |
[21] | LI R, LI X, HENG P A, et al. PointAugment: an auto-augmentation framework for point cloud classification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6377-6386. |
[22] | IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325-1339. |
[23] | MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]// Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 506-516. |
[24] | MEHTA D, SOTNYCHENKO O, MUELLER F, et al. Single-shot multi-person 3D pose estimation from monocular RGB[C]// Proceedings of the 2018 International Conference on 3D Vision. Piscataway: IEEE, 2018: 120-130. |
[25] | CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112. |
[26] | ZHAO W, WANG W, TIAN Y. GraFormer: graph-oriented transformer for 3D pose estimation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20406-20415. |
[27] | CORMIER M, SCHMID Y, BEYERER J. Enhancing skeleton-based action recognition in real-world scenarios through realistic data augmentation[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 300-309. |
[28] | XIANG L, WANG Z. Joint mixing data augmentation for skeleton-based action recognition[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2025, 21(4): No.108. |
[29] | JIANG Y, CHEN H, KO H. Spatial-temporal transformer-guided diffusion based data augmentation for efficient skeleton-based action recognition[EB/OL]. [2024-11-20].. |
[30] | ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3420-3430. |
[31] | MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2659-2668. |
[32] | PAVLLO D, FEICHTENHOFER C, GRANGIER D, et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7745-7754. |
[33] | SHI Y, GUO B, XU Y, et al. Recognition of abnormal human behavior in elevators based on CNN[C]// Proceedings of the 26th International Conference on Automation and Computing. Piscataway: IEEE, 2021: 1-6. |
[34] | LEI J, SUN W, FANG Y, et al. A model for detecting abnormal elevator passenger behavior based on video classification[J]. Electronics, 2024, 13(13): No.2472. |
[35] | SUN Z, XU B, WU D, et al. A real-time video surveillance and state detection approach for elevator cabs[C]// Proceedings of the 2019 International Conference on Control, Automation and Information Sciences. Piscataway: IEEE, 2019: 1-6. |
[1] | Chao SHI, Yuxin ZHOU, Qian FU, Wanyu TANG, Ling HE, Yuanyuan LI. Action recognition algorithm for ADHD patients using skeleton and 3D heatmap [J]. Journal of Computer Applications, 2025, 45(9): 3036-3044. |
[2] | Chuang WANG, Lu YU, Jianwei CHEN, Cheng PAN, Wenbo DU. Review of open set domain adaptation [J]. Journal of Computer Applications, 2025, 45(9): 2727-2736. |
[3] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
[4] | Biao ZHAO, Yuhua QIN, Rongkun TIAN, Yuehang HU, Fangrui CHEN. Dependency type and distance enhanced aspect based sentiment analysis model [J]. Journal of Computer Applications, 2025, 45(8): 2507-2514. |
[5] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
[6] | Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge [J]. Journal of Computer Applications, 2025, 45(6): 1724-1731. |
[7] | Daoquan LI, Zheng XU, Sihui CHEN, Jiayu LIU. Network traffic classification model integrating variational autoencoder and AdaBoost-CNN [J]. Journal of Computer Applications, 2025, 45(6): 1841-1848. |
[8] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[9] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. |
[10] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[11] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[12] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[13] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[14] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[15] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||