Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2507-2514.DOI: 10.11772/j.issn.1001-9081.2024081088
• Artificial intelligence • Previous Articles
					
						                                                                                                                                                                                                                                                                                    Biao ZHAO1, Yuhua QIN1( ), Rongkun TIAN1, Yuehang HU2, Fangrui CHEN2
), Rongkun TIAN1, Yuehang HU2, Fangrui CHEN2
												  
						
						
						
					
				
Received:2024-08-05
															
							
																	Revised:2024-10-21
															
							
																	Accepted:2024-11-04
															
							
							
																	Online:2024-11-19
															
							
																	Published:2025-08-10
															
							
						Contact:
								Yuhua QIN   
													About author:ZHAO Biao, born in 2001, M. S. candidate. His research interests include intelligent information processing, emotion classification.Supported by:通讯作者:
					秦玉华
							作者简介:赵彪(2001—),男,山东菏泽人,硕士研究生,主要研究方向:智能信息处理、情感分类基金资助:CLC Number:
Biao ZHAO, Yuhua QIN, Rongkun TIAN, Yuehang HU, Fangrui CHEN. Dependency type and distance enhanced aspect based sentiment analysis model[J]. Journal of Computer Applications, 2025, 45(8): 2507-2514.
赵彪, 秦玉华, 田荣坤, 胡月航, 陈芳锐. 依赖类型及距离增强的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2507-2514.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081088
| 情感类别 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|
| 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
| 积极 | 2 164 | 727 | 976 | 337 | 1 507 | 172 | 
| 中性 | 637 | 196 | 455 | 167 | 3 016 | 336 | 
| 消极 | 807 | 196 | 851 | 128 | 1 528 | 169 | 
Tab. 1 Statistical information on the number of samples in the datasets
| 情感类别 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|
| 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
| 积极 | 2 164 | 727 | 976 | 337 | 1 507 | 172 | 
| 中性 | 637 | 196 | 455 | 167 | 3 016 | 336 | 
| 消极 | 807 | 196 | 851 | 128 | 1 528 | 169 | 
| 类别 | 模型 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|---|
| ACC | 宏F1 | ACC | 宏F1 | ACC | 宏F1 | ||
| 上下文 | TD-LSTM | 75.60 | 64.51 | 70.81 | 69.11 | 70.80 | 69.00 | 
| GCAE | 79.14 | 68.53 | 71.73 | 66.04 | 72.45 | 70.87 | |
| 语义 | IAN | 79.26 | 70.09 | 72.05 | 67.38 | 72.50 | 70.81 | 
| AOA | 79.97 | 70.42 | 72.62 | 67.52 | 72.30 | 70.20 | |
| 语法 | ASGCN | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 | 
| Sentic GCN | 84.03 | 75.38 | 77.90 | 74.71 | — | — | |
| CRF-GCN | 82.71 | 73.87 | 75.83 | 74.78 | — | — | |
| 多通道 | DGEDT | 83.90 | 75.10 | 76.80 | 72.30 | 74.80 | 73.40 | 
| R-GAT | 83.30 | 76.08 | 77.42 | 73.76 | 75.57 | 73.82 | |
| DGNN | 84.25 | 77.05 | 77.86 | 74.09 | 75.36 | 74.33 | |
| TCKGCN | — | — | 78.50 | 74.21 | 75.92 | 74.26 | |
| 本文模型 | 84.36 | 77.68 | 78.80 | 75.75 | 76.37 | 75.16 | |
Tab. 2 Comparison of results of different models
| 类别 | 模型 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|---|
| ACC | 宏F1 | ACC | 宏F1 | ACC | 宏F1 | ||
| 上下文 | TD-LSTM | 75.60 | 64.51 | 70.81 | 69.11 | 70.80 | 69.00 | 
| GCAE | 79.14 | 68.53 | 71.73 | 66.04 | 72.45 | 70.87 | |
| 语义 | IAN | 79.26 | 70.09 | 72.05 | 67.38 | 72.50 | 70.81 | 
| AOA | 79.97 | 70.42 | 72.62 | 67.52 | 72.30 | 70.20 | |
| 语法 | ASGCN | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 | 
| Sentic GCN | 84.03 | 75.38 | 77.90 | 74.71 | — | — | |
| CRF-GCN | 82.71 | 73.87 | 75.83 | 74.78 | — | — | |
| 多通道 | DGEDT | 83.90 | 75.10 | 76.80 | 72.30 | 74.80 | 73.40 | 
| R-GAT | 83.30 | 76.08 | 77.42 | 73.76 | 75.57 | 73.82 | |
| DGNN | 84.25 | 77.05 | 77.86 | 74.09 | 75.36 | 74.33 | |
| TCKGCN | — | — | 78.50 | 74.21 | 75.92 | 74.26 | |
| 本文模型 | 84.36 | 77.68 | 78.80 | 75.75 | 76.37 | 75.16 | |
| 模型 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|
| ACC | 宏F1 | ACC | 宏F1 | ACC | 宏F1 | |
| 原模型 | 84.36 | 77.68 | 78.80 | 75.75 | 76.37 | 75.16 | 
| w/o DepType | 83.20 | 75.76 | 77.53 | 74.25 | 75.48 | 73.84 | 
| w/o synMask | 83.91 | 75.94 | 77.06 | 73.51 | 75.63 | 73.88 | 
| w/o SCLoss | 83.65 | 76.66 | 78.01 | 74.55 | 75.18 | 74.02 | 
Tab. 3 Results of ablation study
| 模型 | Restaurant | Laptop | ||||
|---|---|---|---|---|---|---|
| ACC | 宏F1 | ACC | 宏F1 | ACC | 宏F1 | |
| 原模型 | 84.36 | 77.68 | 78.80 | 75.75 | 76.37 | 75.16 | 
| w/o DepType | 83.20 | 75.76 | 77.53 | 74.25 | 75.48 | 73.84 | 
| w/o synMask | 83.91 | 75.94 | 77.06 | 73.51 | 75.63 | 73.88 | 
| w/o SCLoss | 83.65 | 76.66 | 78.01 | 74.55 | 75.18 | 74.02 | 
| [1] | 李阳,王石,朱俊武,等. 方面级情感分析综述[J]. 计算机科学, 2023, 50(6A):No.220400077. | 
| LI Y, WANG S, ZHU J W,et al. Summarization of aspect-level sentiment analysis[J]. Computer Science, 2023, 50(6A): No.220400077. | |
| [2] | TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: COLING 2016 Organizing Committee, 2016: 3298-3307. | 
| [3] | XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 2514-2523. | 
| [4] | WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615. | 
| [5] | MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 4068-4074. | 
| [6] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. | 
| [7] | ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578. | 
| [8] | 王汝言,陶中原,赵容剑,等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118. | 
| WANG R Y, TAO Z Y, ZHAO R J, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2022, 44(3): 1111-1118. | |
| [9] | TANG H, JI D, LI C, et al. Dependency graph enhanced dual transformer structure for aspect-based sentiment classification[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588. | 
| [10] | WANG P, TAO L, TANG M, et al. Incorporating syntax and semantics with dual graph neural networks for aspect-level sentiment analysis[J]. Engineering Applications of Artificial Intelligence, 2024, 133(Pt B): No.108101. | 
| [11] | ZHANG S, GONG H, SE L. An aspect sentiment classification model for graph attention networks incorporating syntactic, semantic, and knowledge[J]. Knowledge-Based Systems, 2023, 275: No.110662. | 
| [12] | TE L, JOE I. An adaptive masked attention mechanism to act on the local text in a global context for aspect-based sentiment analysis[J]. IEEE Access, 2023, 11: 43055-43066. | 
| [13] | ZENG B, YANG H, LIU S, et al. Learning for target-dependent sentiment based on local context-aware embedding[J]. Journal of Supercomputing, 2022, 78(3): 4358-4376. | 
| [14] | HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]// Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, LNCS 10899. Cham: Springer, 2018: 197-206. | 
| [15] | 孔丽雅,周治平. 基于ELMo的混合注意力网络的方面级情感分析研究[J]. 中文信息学报, 2023, 37(6): 147-156. | 
| KONG L Y, ZHOU Z P. ELMo and hybrid attention network for aspect-level sentiment analysis[J]. Journal of Chinese Information Processing, 2023, 37(6):147-156. | |
| [16] | BAI X, LIU P, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 503-514. | 
| [17] | LIANG B, HANG S, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: No.107643. | 
| [18] | SHANG W, CHAI J, CAO J, et al. Aspect-level sentiment analysis based on aspect-sentence graph convolution network[J]. Information Fusion, 2024, 104: No.102143. | 
| [19] | WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238. | 
| [20] | XIAO L, XUE Y, WANG H, et al. Exploring fine-grained syntactic information for aspect-based sentiment classification with dual graph Neural Networks[J]. Neurocomputing, 2022, 471: 48-59. | 
| [21] | ZHANG Z, ZHOU Z, WANG Y. SSEGCN: syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4916-4925. | 
| [22] | WANG Y, YANG N, MIAO D, et al. Dual-channel and multi-granularity gated graph attention network for aspect-based sentiment analysis[J]. Applied Intelligence, 2023, 53(11): 13145-13157. | 
| [23] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-10-12].. | 
| [24] | 刘欣逸,宁博,王明,等. 基于句法增强的细粒度情感三元组抽取方法[J]. 计算机研究与发展, 2023, 60(7): 1649-1660. | 
| LIU X Y, NING B, WANG M, et al. Fine-grained sentiment triplet extraction method based on syntactic enhancement[J]. Journal of Computer Research and Development, 2023, 60(7): 1649-1660. | |
| [25] | JAVEED A. A hybrid attention mechanism for multi-target entity relation extraction using graph neural networks[J]. Machine Learning with Applications, 2023, 11: No.100444. | 
| [26] | KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 18661-18673. | 
| [27] | JIA O, HUANG H, REN J, et al. Contrastive learning with text augmentation for text classification[J]. Applied Intelligence, 2023, 53(16): 19522-19531. | 
| [28] | CHEN Q, ZHANG R, ZHENG Y, et al. Dual contrastive learning: text classification via label-aware data augmentation[EB/OL]. [2024-07-15].. | 
| [29] | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. | 
| [30] | MANNING C D, SURDEANU M, BAUER J, et al. The Stanford CoreNLP natural language processing toolkit[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2014: 55-60. | 
| [31] | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35. | 
| [32] | DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2014: 49-54. | 
| [33] | HUANG B, ZHANG J, JU J, et al. CRF-GCN: an effective syntactic dependency model for aspect-level sentiment analysis[J]. Knowledge-Based Systems, 2023, 260: No.110125. | 
| [34] | HAO J, PEI L, HE Y, et al. TCKGCN: graph convolutional network for aspect-based sentiment analysis with three-channel knowledge fusion[J]. Neurocomputing, 2024, 600: No.128163. | 
| [1] | Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge [J]. Journal of Computer Applications, 2025, 45(6): 1724-1731. | 
| [2] | Jian SHUAI, Zhongqing WANG, Jiali CHEN. Aspect-based sentiment analysis method based on code generation [J]. Journal of Computer Applications, 2025, 45(6): 1827-1832. | 
| [3] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. | 
| [4] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. | 
| [5] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. | 
| [6] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. | 
| [7] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. | 
| [8] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [9] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. | 
| [10] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [12] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. | 
| [13] | Xiting LYU, Jinghua ZHAO, Haiying RONG, Jiale ZHAO. Information diffusion prediction model based on Transformer and relational graph convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1760-1766. | 
| [14] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. | 
| [15] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||