1 |
胡宏宇,刁小桔,高菲,等. 自动驾驶汽车-行人交互研究综述[J]. 汽车技术, 2021(9): 1-9.
|
2 |
左志强,刘正璇,王一晶. 基于车路云一体化的混合交通系统优化控制综述[J]. 控制与决策, 2023, 38(3): 577-594.
|
3 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
4 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
|
5 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
|
8 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-01-16]..
|
9 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-04-23]..
|
10 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-09-07]..
|
11 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023:7464-7475.
|
12 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
13 |
XU H, GUO M, NEDJAH N, et al. Vehicle and pedestrian detection algorithm based on lightweight YOLOv3-promote and semi-precision acceleration[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19760-19771.
|
14 |
LI K, ZHUANG Y, LAI J, et al. PFYOLOv4: an improved small object pedestrian detection algorithm[J]. IEEE Access, 2023, 11: 17197-17206.
|
15 |
XUE P, CHEN H, LI Y, et al. Multi-scale pedestrian detection with global-local attention and multi-scale receptive field context[J]. IET Computer Vision, 2023, 17(1): 13-25.
|
16 |
SHA M, ZENG K, TAO Z, et al. Lightweight pedestrian detection based on feature multiplexed residual network[J]. Electronics, 2023, 12(4):No. 918.
|
17 |
LI M L, SUN G B, YU J X. A pedestrian detection network model based on improved YOLOv5[J]. Entropy, 2023, 25(2): No.381.
|
18 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19.
|
21 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
|
22 |
TANG H, LIANG S, YAO D, et al. A visual defect detection for optics lens based on the YOLOv5-C3CA-SPPF network model[J]. Optics Express, 2023, 31(2): 2628-2643.
|
23 |
ZHANG S, XIE Y, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380‑393.
|