Journal of Computer Applications ›› 0, Vol. ›› Issue (): 357-363.DOI: 10.11772/j.issn.1001-9081.2024020172

• Frontier and comprehensive applications • Previous Articles     Next Articles

Review of machine learning-based sepsis prediction and intervention decision-making research

Kunhua ZHONG1, Yuwen CHEN1(), Xiaolin QIN2, Qilong SUN1, Bin YI3   

  1. 1.Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China
    2.Laboratory for Automated Reasoning and Programming,Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610213,China
    3.Department of Anesthesiology,The Southwest Hospital of Army Medical University,Chongqing 400038,China
  • Received:2024-02-22 Revised:2024-05-17 Accepted:2024-05-27 Online:2025-01-24 Published:2024-12-31
  • Contact: Yuwen CHEN

基于机器学习的脓毒症预测与干预决策研究综述

钟坤华1, 陈芋文1(), 秦小林2, 孙启龙1, 易斌3   

  1. 1.中国科学院 重庆绿色智能技术研究院,重庆 400714
    2.中国科学院成都计算机应用研究所 自动推理实验室,成都 610213
    3.陆军军医大学 第一附属医院 麻醉科,重庆 400038
  • 通讯作者: 陈芋文
  • 作者简介:钟坤华(1984—),男,重庆人,高级工程师,博士,主要研究方向:大数据分析、人工智能医疗应用
    陈芋文(1985—),男,重庆人,研究员,博士,CCF会员,主要研究方向:医疗健康机器学习、因果推理、深度学习
    秦小林(1980—),男,重庆人,研究员,博士,CCF会员,主要研究方向:自动推理、人工智能
    孙启龙(1984—),男,山东枣庄人,正高级工程师,主要研究方向:超级计算机、人工智能
    易斌(1974—),男,重庆人,教授,博士,主要研究方向:围术期大数据的治理和算法。
  • 基金资助:
    国家自然科学基金资助项目(62371438);重庆市自然科学基金资助项目(CSTB2022NSCQ?MSX0894)

Abstract:

Sepsis is a medical emergency triggered by pathogenic microorganisms such as bacteria, which can be life-threatening when severe, making early diagnosis and timely treatment crucial. In recent years, machine learning technology has shown tremendous potential in early prediction and treatment strategies for sepsis. By integrating data from multiple sources, machine learning models can assess patient risk accurately and identify high-risk individuals automatically, enabling early diagnosis of sepsis. In addition, machine learning can also assist physicians in developing personalized treatment plans. However, clinical applications based on machine learning methods still face a series of challenges, such as data standardization, model interpretability, and acceptance by medical personnel. Therefore, a comprehensive review was conducted on machine learning based sepsis prediction and intervention decision-making methods. Firstly, the basic process and framework of sepsis prediction and intervention decision-making were introduced. Then, the methods, relevant data and evaluation indicators of sepsis prediction and intervention decision-making were summed up systematically. Furthermore, a detailed summary of the specific applications of machine learning methods in sepsis-related clinical aspects was provided. Finally, the main challenges faced in this field currently were summarized, and future development trends were prospected.

Key words: sepsis, machine learning, early prediction, treatment strategy

摘要:

脓毒症是一种由细菌等病原微生物引发的医疗紧急状况,严重时可危及生命,因此早期诊断和及时治疗至关重要。近年来,机器学习技术在脓毒症的早期预测和治疗策略方面展现出巨大的潜力。通过综合多源数据,机器学习模型能精确评估患者的风险并自动识别高风险的个体,从而实现对脓毒症的早期诊断。此外,机器学习还能辅助医生制定个性化治疗方案。然而,基于机器学习方法的临床应用目前仍面临一系列挑战,如数据标准化、模型可解释性以及医疗人员的接受度等。因此,针对基于机器学习的脓毒症预测与干预决策方法进行了系统综述。首先,介绍了脓毒症预测与干预决策的基础流程和框架;接着,系统性地概括了基于机器学习的脓毒症预测与干预决策的方法、相关数据及评价指标;然后,详细总结了机器学习方法在脓毒症相关临床方面的具体应用;最后,总结了目前该领域面临的主要挑战,并展望了未来的发展趋势。

关键词: 脓毒症, 机器学习, 早期预测, 治疗策略

CLC Number: