Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3510-3518.DOI: 10.11772/j.issn.1001-9081.2024121834
• The 7th CCF China Conference on Blockchain Technology • Previous Articles
Jian YUN(
), Xinru GAO, Tao LIU, Wenjie BI
Received:2024-12-30
Revised:2025-01-17
Accepted:2025-01-24
Online:2025-02-14
Published:2025-11-10
Contact:
Jian YUN
About author:GAO Xinru, born in 2001, M. S. candidate. Her research interests include federated learning.Supported by:通讯作者:
云健
作者简介:高新茹(2001—),女,辽宁大连人,硕士研究生,主要研究方向:联邦学习基金资助:CLC Number:
Jian YUN, Xinru GAO, Tao LIU, Wenjie BI. New federated learning scheme balancing efficiency and security[J]. Journal of Computer Applications, 2025, 45(11): 3510-3518.
云健, 高新茹, 刘涛, 毕文洁. 兼顾高效性和安全性的新型联邦学习方案[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3510-3518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121834
| 数据量/B | LWE | BFV | Paillier | |||
|---|---|---|---|---|---|---|
| 加密时间/s | 解密时间/s | 加密时间/s | 解密时间/s | 加密时间/s | 解密时间/s | |
| 2 000 | 592.46 | 4.98 | 108.11 | 53.81 | 64.35 | 18.34 |
| 20 000 | 6 131.32 | 51.98 | 1 101.31 | 549.68 | 612.34 | 177.21 |
| 40 000 | — | — | 2 059.33 | 1 083.56 | 1 198.54 | 694.66 |
Tab. 1 Comparison of encryption and decryption times for different encryption algorithms under same computing power
| 数据量/B | LWE | BFV | Paillier | |||
|---|---|---|---|---|---|---|
| 加密时间/s | 解密时间/s | 加密时间/s | 解密时间/s | 加密时间/s | 解密时间/s | |
| 2 000 | 592.46 | 4.98 | 108.11 | 53.81 | 64.35 | 18.34 |
| 20 000 | 6 131.32 | 51.98 | 1 101.31 | 549.68 | 612.34 | 177.21 |
| 40 000 | — | — | 2 059.33 | 1 083.56 | 1 198.54 | 694.66 |
| 符号 | 数值 | 定义 |
|---|---|---|
| 100.00 | 客户端设备数 | |
| 0.10 | 参与的客户端比例 | |
| 10.00 | 本地训练批的大小 | |
| 10.00 | 本地训练次数 | |
| 0.01 | 学习率 |
Tab. 2 Parameter settings of federated learning in experiments
| 符号 | 数值 | 定义 |
|---|---|---|
| 100.00 | 客户端设备数 | |
| 0.10 | 参与的客户端比例 | |
| 10.00 | 本地训练批的大小 | |
| 10.00 | 本地训练次数 | |
| 0.01 | 学习率 |
| 方案 | 通信时间/s | 上传模型大小/MB |
|---|---|---|
| FedAvg | 29.843 | 0.083 319 |
| FedPSR | 33.877 | 0.000 365 |
| Top-K | 33.412 | 0.000 322 |
| PruneFL | 35.029 | 0.000 358 |
Tab. 3 Transmission time overhead and model size in one iteration training
| 方案 | 通信时间/s | 上传模型大小/MB |
|---|---|---|
| FedAvg | 29.843 | 0.083 319 |
| FedPSR | 33.877 | 0.000 365 |
| Top-K | 33.412 | 0.000 322 |
| PruneFL | 35.029 | 0.000 358 |
| [1] | RODRIGUES T K, SUTO K, KATO N. Edge cloud server deployment with transmission power control through machine learning for 6G internet of things[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(4): 2099-2108. |
| [2] | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
| [3] | BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[C]// Proceedings of the 2019 Machine Learning and Systems 1. Stanford: MLSys.org, 2019: 193-204. |
| [4] | PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333-1345. |
| [5] | ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
| [6] | YAO A C C. How to generate and exchange secrets[C]// Proceedings of the 27th Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 1986: 162-167. |
| [7] | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]// Proceedings of the 2020 Machine Learning and Systems 2. Stanford: MLSys.org, 2020: 429-450. |
| [8] | ALISTARH D, GRUBIC D, LI J Z,et al. QSGD: communication-efficient SGD via gradient quantization and encoding[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017:1707-1718. |
| [9] | AJI A F, HEAFIELD K. Sparse communication for distributed gradient descent[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 440-445. |
| [10] | SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from non-i.i.d. data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3400-3413. |
| [11] | LU S, LI R, LIU W, et al. Top-k sparsification with secure aggregation for privacy-preserving federated learning[J]. Computers and Security, 2023, 124: No.102993. |
| [12] | KONEČNÝ J, McMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[EB/OL]. [2024-05-26]. . |
| [13] | FANG C, GUO Y, HU Y, et al. Privacy-preserving and communication-efficient federated learning in Internet of Things[J]. Computers and Security, 2021, 103: No.102199. |
| [14] | ZHANG J, LI X, LIANG W, et al. Two-phase sparsification with secure aggregation for privacy-aware federated learning[J]. IEEE Internet of Things Journal, 2024, 11(16): 27112-27125. |
| [15] | JIANG Y, WANG S, VALLS V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10374-10386. |
| [16] | ZHU X, WANG J, CHEN W, et al. Model compression and privacy preserving framework for federated learning[J]. Future Generation Computer Systems, 2023, 140: 376-389. |
| [17] | KARIMIREDDY S P, REBJOCK Q, STICH S U, et al. Error feedback fixes signSGD and other gradient compression schemes[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 3252-3261. |
| [18] | LI Z, HUANG Z, CHEN C, et al. Quantification of the leakage in federated learning [EB/OL]. [2024-06-08]. . |
| [19] | RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169-179. |
| [20] | GENTRY C. Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41st Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 169-178. |
| [21] | PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]// Proceedings of the 1999 International Conference on the Theory and Applications of Cryptographic Techniques, LNCS 1592. Berlin: Springer, 1999: 223-238. |
| [22] | WANG B, LI H T, GUO Y N, et al. PPFLHE: a privacy-preserving federated learning scheme with homomorphic encryption for healthcare data[J]. Applied Soft Computing, 2023, 146: No.110677. |
| [23] | PADDOCK S, ABEDTASH H, ZUMMO J, et al. Proof-of-concept study: homomorphically encrypted data can support real-time learning in personalized cancer medicine[J]. BMC Medical Informatics and Decision Making, 2019, 19: No.255. |
| [24] | ASAD M, MOUSTAFA A, ITO T. FedOpt: towards communication efficiency and privacy preservation in federated learning[J]. Applied Sciences, 2020, 10(8): No.2864. |
| [25] | LeCUN Y. The MNIST database of handwritten digits [DB/OL]. [2024-05-11]. . |
| [26] | KRIZHEVSKY A. The CIFAR-10 dataset [DS/OL]. [2024-05-11]. . |
| [27] | XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. [2024-05-11]. . |
| [28] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
| [1] | Hao YU, Jing FAN, Yihang SUN, Hua DONG, Enkang XI. Survey of statistical heterogeneity in federated learning [J]. Journal of Computer Applications, 2025, 45(9): 2737-2746. |
| [2] | Sheping ZHAI, Pengju ZHU, Rui YANG, Jiayiteng LIU. Blockchain-based identity management system for internet of things [J]. Journal of Computer Applications, 2025, 45(9): 2873-2881. |
| [3] | Bohan ZHANG, Le LYU, Junchang JING, Dong LIU. Genetic algorithm-based community hiding method in attribute networks [J]. Journal of Computer Applications, 2025, 45(9): 2817-2826. |
| [4] | Yan YAN, Feifei LI, Yaqin LYU, Tao FENG. Secure and efficient frequency estimation method based on shuffled differential privacy [J]. Journal of Computer Applications, 2025, 45(8): 2600-2611. |
| [5] | Jintao SU, Lina GE, Liguang XIAO, Jing ZOU, Zhe WANG. Detection and defense scheme for backdoor attacks in federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2399-2408. |
| [6] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
| [7] | Hongyang ZHANG, Shufen ZHANG, Zheng GU. Federated learning algorithm for personalization and fairness [J]. Journal of Computer Applications, 2025, 45(7): 2123-2131. |
| [8] | Li’e WANG, Caiyi LIN, Yongdong LI, Xingcheng FU, Xianxian LI. Digital content copyright protection and fair tracking scheme based on blockchain [J]. Journal of Computer Applications, 2025, 45(6): 1756-1765. |
| [9] | Yiming ZHANG, Tengfei CAO. Federated learning optimization algorithm based on local drift and diversity computing power [J]. Journal of Computer Applications, 2025, 45(5): 1447-1454. |
| [10] | Gaimei GAO, Miaolian DU, Chunxia LIU, Yuli YANG, Weichao DANG, Guoxia DI. Privacy protection method for consortium blockchain based on SM2 linkable ring signature [J]. Journal of Computer Applications, 2025, 45(5): 1564-1572. |
| [11] | Yazhou FAN, Zhuo LI. Node collaboration mechanism for quality optimization of hierarchical federated learning models under energy consumption constraints [J]. Journal of Computer Applications, 2025, 45(5): 1589-1594. |
| [12] | Qingli CHEN, Yuanbo GUO, Chen FANG. Clustering federated learning algorithm for heterogeneous data [J]. Journal of Computer Applications, 2025, 45(4): 1086-1094. |
| [13] | Yufei XIANG, Zhengwei NI. Edge federation dynamic analysis for hierarchical federated learning based on evolutionary game [J]. Journal of Computer Applications, 2025, 45(4): 1077-1085. |
| [14] | Haili LIN, Jing LI. Lazy client identification method in federated learning based on proof-of-work [J]. Journal of Computer Applications, 2025, 45(3): 856-863. |
| [15] | Hui ZENG, Shiyu XIONG, Yongzheng DI, Hongzhou SHI. Federated parameter-efficient fine-tuning technology for large model based on pruning [J]. Journal of Computer Applications, 2025, 45(3): 715-724. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||