Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 4045-4054.DOI: 10.11772/j.issn.1001-9081.2024111669
• Multimedia computing and computer simulation • Previous Articles Next Articles
Sihao WANG, Duzhen ZHANG, Changchang YANG
Received:2024-11-26
Revised:2025-02-15
Accepted:2025-02-21
Online:2025-03-04
Published:2025-12-10
Contact:
Duzhen ZHANG
About author:WANG Sihao, born in 2002, M. S. candidate. His research interests include deep learning, medical image processing.Supported by:王斯豪, 张笃振, 杨昌昌
通讯作者:
张笃振
作者简介:王斯豪(2002—),男,江苏盐城人,硕士研究生,CCF会员,主要研究方向:深度学习、医学影像处理基金资助:CLC Number:
Sihao WANG, Duzhen ZHANG, Changchang YANG. Skin lesion image segmentation based on dual-path attention mechanism and multi-scale information fusion[J]. Journal of Computer Applications, 2025, 45(12): 4045-4054.
王斯豪, 张笃振, 杨昌昌. 基于双路径注意力机制和多尺度信息融合的皮肤病灶图像分割[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 4045-4054.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111669
| 网络 | ISIC2017数据集 | ISIC2018数据集 | Params/106 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Dice/% | IoU/% | Acc/% | Spe/% | Dice/% | IoU/% | Acc/% | Spe/% | ||
| U-Net | 82.30 | 69.92 | 94.43 | 97.86 | 85.18 | 74.18 | 92.99 | 96.26 | 32.08 |
| UNet++ | 86.60 | 76.37 | 95.59 | 97.66 | 87.70 | 78.09 | 94.06 | 96.31 | 47.19 |
| Attention U-Net | 85.29 | 74.35 | 95.27 | 97.95 | 86.83 | 76.73 | 93.77 | 96.56 | 34.88 |
| Swin-Unet | 85.00 | 73.91 | 95.06 | 97.36 | 85.74 | 75.04 | 93.15 | 95.90 | 41.34 |
| TransUNet | 84.47 | 73.12 | 94.97 | 97.65 | 85.70 | 74.98 | 93.28 | 96.67 | 54.86 |
| UCTransNet | 87.01 | 77.00 | 95.66 | 97.42 | 87.14 | 77.21 | 93.76 | 97.55 | 66.24 |
| MALUNet | 86.87 | 76.79 | 95.60 | 97.33 | 96.13 | 0.175 | |||
| DCSAU-Net | 95.93 | 98.38 | 87.14 | 77.21 | 93.95 | ||||
| 本文网络 | 87.43 | 77.66 | 97.73 | 89.02 | 80.22 | 94.71 | 96.83 | 19.49 | |
Tab. 1 Comparison of segmentation results for different networks on ISIC2017 and ISIC2018 datasets
| 网络 | ISIC2017数据集 | ISIC2018数据集 | Params/106 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Dice/% | IoU/% | Acc/% | Spe/% | Dice/% | IoU/% | Acc/% | Spe/% | ||
| U-Net | 82.30 | 69.92 | 94.43 | 97.86 | 85.18 | 74.18 | 92.99 | 96.26 | 32.08 |
| UNet++ | 86.60 | 76.37 | 95.59 | 97.66 | 87.70 | 78.09 | 94.06 | 96.31 | 47.19 |
| Attention U-Net | 85.29 | 74.35 | 95.27 | 97.95 | 86.83 | 76.73 | 93.77 | 96.56 | 34.88 |
| Swin-Unet | 85.00 | 73.91 | 95.06 | 97.36 | 85.74 | 75.04 | 93.15 | 95.90 | 41.34 |
| TransUNet | 84.47 | 73.12 | 94.97 | 97.65 | 85.70 | 74.98 | 93.28 | 96.67 | 54.86 |
| UCTransNet | 87.01 | 77.00 | 95.66 | 97.42 | 87.14 | 77.21 | 93.76 | 97.55 | 66.24 |
| MALUNet | 86.87 | 76.79 | 95.60 | 97.33 | 96.13 | 0.175 | |||
| DCSAU-Net | 95.93 | 98.38 | 87.14 | 77.21 | 93.95 | ||||
| 本文网络 | 87.43 | 77.66 | 97.73 | 89.02 | 80.22 | 94.71 | 96.83 | 19.49 | |
| 网络 | ISIC2017上训练的网络 | ISIC2018上训练的网络 | ||||||
|---|---|---|---|---|---|---|---|---|
| Dice | IoU | Acc | Spe | Dice | IoU | Acc | Spe | |
| U-Net | 86.33 | 75.95 | 92.96 | 88.22 | 78.92 | 93.69 | 97.38 | |
| UNet++ | 90.82 | 83.19 | 95.08 | 98.29 | 92.61 | 86.24 | 95.92 | 97.75 |
| Attention U-Net | 89.11 | 80.36 | 94.24 | 98.22 | 90.62 | 82.85 | 94.87 | 97.43 |
| Swin-Unet | 90.56 | 82.75 | 94.87 | 97.60 | 90.80 | 83.16 | 94.86 | 96.62 |
| TransUNet | 89.02 | 80.21 | 94.17 | 98.04 | 89.29 | 80.67 | 94.26 | 97.67 |
| UCTransNet | 97.14 | 93.06 | 87.01 | 96.12 | 97.48 | |||
| MALUNet | 91.50 | 84.33 | 95.34 | 97.63 | 92.21 | 85.55 | 95.66 | 97.19 |
| DCSAU-Net | 91.44 | 84.23 | 95.29 | 97.48 | 91.36 | 84.10 | 95.37 | 98.48 |
| 本文网络 | 91.81 | 84.85 | 95.54 | 98.07 | ||||
Tab. 2 Comparison of segmentation results for different networks on fusion dataset
| 网络 | ISIC2017上训练的网络 | ISIC2018上训练的网络 | ||||||
|---|---|---|---|---|---|---|---|---|
| Dice | IoU | Acc | Spe | Dice | IoU | Acc | Spe | |
| U-Net | 86.33 | 75.95 | 92.96 | 88.22 | 78.92 | 93.69 | 97.38 | |
| UNet++ | 90.82 | 83.19 | 95.08 | 98.29 | 92.61 | 86.24 | 95.92 | 97.75 |
| Attention U-Net | 89.11 | 80.36 | 94.24 | 98.22 | 90.62 | 82.85 | 94.87 | 97.43 |
| Swin-Unet | 90.56 | 82.75 | 94.87 | 97.60 | 90.80 | 83.16 | 94.86 | 96.62 |
| TransUNet | 89.02 | 80.21 | 94.17 | 98.04 | 89.29 | 80.67 | 94.26 | 97.67 |
| UCTransNet | 97.14 | 93.06 | 87.01 | 96.12 | 97.48 | |||
| MALUNet | 91.50 | 84.33 | 95.34 | 97.63 | 92.21 | 85.55 | 95.66 | 97.19 |
| DCSAU-Net | 91.44 | 84.23 | 95.29 | 97.48 | 91.36 | 84.10 | 95.37 | 98.48 |
| 本文网络 | 91.81 | 84.85 | 95.54 | 98.07 | ||||
| 网络 | 毛发遮挡 | 边缘模糊 | 尺度不一 | 对比度低 | 边界不规则 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | |
| U-Net | 86.64 | 76.42 | 92.76 | 76.57 | 62.04 | 88.65 | 83.71 | 71.98 | 88.76 | 76.59 | 62.06 | 90.47 | 93.02 | 86.96 | 94.98 |
| UNet++ | 91.02 | 83.53 | 94.93 | 83.71 | 71.98 | 91.57 | 90.36 | 82.43 | 92.93 | 85.49 | 74.65 | 93.53 | 94.11 | 88.88 | 95.61 |
| Attention U-Net | 89.48 | 80.96 | 94.17 | 82.35 | 70.00 | 91.00 | 87.30 | 77.46 | 90.97 | 83.16 | 71.17 | 92.67 | 93.32 | 87.47 | 95.73 |
| Swin-Unet | 88.72 | 80.96 | 93.53 | 84.96 | 73.85 | 92.13 | 91.93 | 85.07 | 93.90 | 84.95 | 73.84 | 93.32 | 94.29 | 89.20 | 95.73 |
| TransUNet | 89.48 | 80.96 | 94.13 | 81.13 | 68.25 | 90.38 | 88.12 | 78.76 | 91.47 | 82.30 | 69.92 | 92.29 | 92.60 | 86.22 | 94.51 |
| UCTransNet | 93.12 | 87.13 | 95.97 | 87.42 | 77.65 | 92.99 | 92.07 | 85.31 | 93.98 | 92.90 | 86.74 | 94.50 | |||
| MALUNet | 91.19 | 83.80 | 94.94 | 92.43 | 85.92 | 94.25 | 86.92 | 76.86 | 93.98 | 94.79 | 90.10 | 96.07 | |||
| DCSAU-Net | 92.10 | 85.35 | 95.38 | 83.89 | 72.25 | 91.37 | 94.52 | 89.60 | 95.70 | 84.58 | 73.28 | 92.82 | 93.74 | 88.22 | 95.27 |
| 本文网络 | 85.22 | 74.25 | 92.22 | 89.45 | 80.91 | 95.05 | |||||||||
Tab. 3 Comparison of segmentation results for different networks across different scenarios
| 网络 | 毛发遮挡 | 边缘模糊 | 尺度不一 | 对比度低 | 边界不规则 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | Dice | IoU | Acc | |
| U-Net | 86.64 | 76.42 | 92.76 | 76.57 | 62.04 | 88.65 | 83.71 | 71.98 | 88.76 | 76.59 | 62.06 | 90.47 | 93.02 | 86.96 | 94.98 |
| UNet++ | 91.02 | 83.53 | 94.93 | 83.71 | 71.98 | 91.57 | 90.36 | 82.43 | 92.93 | 85.49 | 74.65 | 93.53 | 94.11 | 88.88 | 95.61 |
| Attention U-Net | 89.48 | 80.96 | 94.17 | 82.35 | 70.00 | 91.00 | 87.30 | 77.46 | 90.97 | 83.16 | 71.17 | 92.67 | 93.32 | 87.47 | 95.73 |
| Swin-Unet | 88.72 | 80.96 | 93.53 | 84.96 | 73.85 | 92.13 | 91.93 | 85.07 | 93.90 | 84.95 | 73.84 | 93.32 | 94.29 | 89.20 | 95.73 |
| TransUNet | 89.48 | 80.96 | 94.13 | 81.13 | 68.25 | 90.38 | 88.12 | 78.76 | 91.47 | 82.30 | 69.92 | 92.29 | 92.60 | 86.22 | 94.51 |
| UCTransNet | 93.12 | 87.13 | 95.97 | 87.42 | 77.65 | 92.99 | 92.07 | 85.31 | 93.98 | 92.90 | 86.74 | 94.50 | |||
| MALUNet | 91.19 | 83.80 | 94.94 | 92.43 | 85.92 | 94.25 | 86.92 | 76.86 | 93.98 | 94.79 | 90.10 | 96.07 | |||
| DCSAU-Net | 92.10 | 85.35 | 95.38 | 83.89 | 72.25 | 91.37 | 94.52 | 89.60 | 95.70 | 84.58 | 73.28 | 92.82 | 93.74 | 88.22 | 95.27 |
| 本文网络 | 85.22 | 74.25 | 92.22 | 89.45 | 80.91 | 95.05 | |||||||||
| FM | AttMSFE | MCEM | DGConv | Dice | IoU | Acc | Spe |
|---|---|---|---|---|---|---|---|
| 85.18 | 74.18 | 92.99 | 96.26 | ||||
| √ | 86.69 | 76.50 | 93.46 | 95.36 | |||
| √ | 86.00 | 75.44 | 93.29 | 96.03 | |||
| √ | 85.97 | 75.40 | 93.34 | 96.40 | |||
| √ | 86.85 | 76.76 | 93.70 | 96.38 | |||
| √ | √ | 87.13 | 77.20 | 93.83 | 96.40 | ||
| √ | √ | 87.29 | 77.45 | 93.80 | 95.83 | ||
| √ | √ | 87.36 | 77.56 | 93.81 | 95.67 | ||
| √ | √ | √ | 88.54 | 79.43 | 94.39 | 96.15 | |
| √ | √ | √ | √ | 89.02 | 80.22 | 94.71 | 96.83 |
Tab.4 Ablation experimental results for different module
| FM | AttMSFE | MCEM | DGConv | Dice | IoU | Acc | Spe |
|---|---|---|---|---|---|---|---|
| 85.18 | 74.18 | 92.99 | 96.26 | ||||
| √ | 86.69 | 76.50 | 93.46 | 95.36 | |||
| √ | 86.00 | 75.44 | 93.29 | 96.03 | |||
| √ | 85.97 | 75.40 | 93.34 | 96.40 | |||
| √ | 86.85 | 76.76 | 93.70 | 96.38 | |||
| √ | √ | 87.13 | 77.20 | 93.83 | 96.40 | ||
| √ | √ | 87.29 | 77.45 | 93.80 | 95.83 | ||
| √ | √ | 87.36 | 77.56 | 93.81 | 95.67 | ||
| √ | √ | √ | 88.54 | 79.43 | 94.39 | 96.15 | |
| √ | √ | √ | √ | 89.02 | 80.22 | 94.71 | 96.83 |
| 方法 | Dice | IoU | Acc |
|---|---|---|---|
| BCE | 88.08 | 78.70 | 94.23 |
| Dice | 80.38 | 67.20 | 90.56 |
| Dice+BCE | 89.02 | 80.22 | 94.71 |
Tab. 5 Ablation experimental results for loss functions
| 方法 | Dice | IoU | Acc |
|---|---|---|---|
| BCE | 88.08 | 78.70 | 94.23 |
| Dice | 80.38 | 67.20 | 90.56 |
| Dice+BCE | 89.02 | 80.22 | 94.71 |
| [1] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263. |
| [2] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33. |
| [3] | 张玮智,于谦,苏金善,等. 从U-Net到Transformer:深度模型在医学图像分割中的应用综述[J]. 计算机应用, 2024, 44(S1): 204-222. |
| ZHANG W Z, YU Q, SU J S, et al. From U-Net to Transformer: a review of deep models in medical image segmentation[J]. Journal of Computer Applications, 2024, 44(S1): 204-222. | |
| [4] | XIA S, KRISHNAN S M, TJOA M P, et al. A novel methodology for extracting colon’s lumen from colonoscopic images[J]. Journal of Systemics, Cybernetics and Informatics, 2003, 1(2): 7-12. |
| [5] | MOSCHENI F, BHATTACHARJEE S, KUNT M. Spatio-temporal segmentation based on region merging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(9): 897-915. |
| [6] | CELEBI M E, IYATOMI H, SCHAEFER G, et al. Lesion border detection in dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2009, 33(2): 148-153. |
| [7] | SAHA A, PRASAD P, THABIT A. Leveraging adaptive color augmentation in convolutional neural networks for deep skin lesion segmentation[C]// Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2020: 2014-2017. |
| [8] | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
| [9] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. |
| [10] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
| [11] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-06-14].. |
| [12] | GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. |
| [13] | KOTEI E, THIRUNAVUKARASU R. A systematic review of transformer-based pre-trained language models through self-supervised learning[J]. Information, 2023, 14(3): No.187. |
| [14] | CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]// Proceedings of the 2022 European Conference on Computer Vision Workshops, LNCS 13803. Cham: Springer, 2023: 205-218. |
| [15] | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis and the International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
| [16] | OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2024-07-24]. . |
| [17] | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
| [18] | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2024-05-08].. |
| [19] | 梁礼明,彭仁杰,冯骏,等. 基于多尺度特征融合双U型皮肤病变分割算法[J]. 计算机应用研究, 2021, 38(9): 2876-2880. |
| LIANG L M, PENG R J, FENG J, et al. Skin lesion image segmentation algorithm based on multi-scale feature fusion double U-Net[J]. Application Research of Computers, 2021, 38(9): 2876-2880. | |
| [20] | RUAN J, XIANG S, XIE M, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[C]// Proceedings of the 2022 IEEE Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2022: 1150-1156. |
| [21] | 崔少国,文浩,张宇楠,等. 带有注意力机制的OCTA视网膜血管分割方法[J]. 计算机工程与应用, 2023, 59(18): 163-171. |
| CUI S G, WEN H, ZHANG Y N, et al. Segmentation method of retinal vessels in OCTA with attention mechanism[J]. Computer Engineering and Applications, 2023, 59(18): 163-171. | |
| [22] | LE P T, PHAM B T, CHANG C C, et al. Anti-aliasing attention U-net model for skin lesion segmentation[J]. Diagnostics, 2023, 13(8): No.1460. |
| [23] | RAHMAN C M A, BHUIYAN R K, SHYAM S P, et al. Attention enabled MultiResUNet for bio-medical image segmentation[C]// Proceedings of the 6th International Conference on Electrical Engineering and Information and Communication Technology. Piscataway: IEEE, 2024: 622-627. |
| [24] | WU R, LIANG P, HUANG X, et al. MHorUNet: high-order spatial interaction UNet for skin lesion segmentation[J]. Biomedical Signal Processing and Control, 2024, 88(Pt B): No.105517. |
| [25] | 陶惜婷,叶青. 融合CNN和Transformer的并行双分支皮肤病灶图像分割[J]. 计算机应用研究, 2024, 41(8): 2554-2560. |
| TAO X T, YE Q. Parallel dual-branch image segmentation of skin lesions fusing CNN and Transformer[J]. Application Research of Computers, 2024, 41(8): 2554-2560. | |
| [26] | HOU Q, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4002-4011. |
| [27] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
| [28] | PENG Y, SONKA M, CHEN D Z. U-Net v2: rethinking the skip connections of U-Net for medical image segmentation[EB/OL]. [2024-05-18].. |
| [29] | CHEN Z, HE Z, LU Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002-1015. |
| [30] | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2024-07-18].. |
| [31] | WANG H, CAO P, WANG J, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with Transformer[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 2441-2449. |
| [32] | XU Q, MA Z, NA H, et al. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 154: No.106626. |
| [1] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [4] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [5] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. |
| [6] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [7] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [8] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [9] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [10] | Yimeng XI, Zhen DENG, Qian LIU, Libo LIU. Cross-modal information fusion for video-text retrieval [J]. Journal of Computer Applications, 2025, 45(8): 2448-2456. |
| [11] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
| [12] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [13] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| [14] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
| [15] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||