Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1356-1362.DOI: 10.11772/j.issn.1001-9081.2024040533
• Frontier and comprehensive applications • Previous Articles
Received:
2024-04-28
Revised:
2024-08-14
Accepted:
2024-08-16
Online:
2025-04-08
Published:
2025-04-10
Contact:
Site MO
About author:
LI Jiaxin, born in 1999, M. S. candidate. Her research interests include power system data analysis.
Supported by:
通讯作者:
莫思特
作者简介:
李嘉欣(1999—),女,山西长治人,硕士研究生,主要研究方向:电力系统数据分析
基金资助:
CLC Number:
Jiaxin LI, Site MO. Power work order classification in substation area based on MiniRBT-LSTM-GAT and label smoothing[J]. Journal of Computer Applications, 2025, 45(4): 1356-1362.
李嘉欣, 莫思特. 基于MiniRBT-LSTM-GAT与标签平滑的台区电力工单分类[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1356-1362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040533
数据集 | 类别数 | 合计 | 样本数 | ||
---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | |||
RSPWO | 15 | 9 779 | 6 260 | 1 563 | 1 956 |
ZJPWO | 7 | 92 116 | 63 003 | 14 556 | 14 557 |
THUCNews | 10 | 65 000 | 50 000 | 5 000 | 10 000 |
Tab. 1 Statistics of datasets
数据集 | 类别数 | 合计 | 样本数 | ||
---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | |||
RSPWO | 15 | 9 779 | 6 260 | 1 563 | 1 956 |
ZJPWO | 7 | 92 116 | 63 003 | 14 556 | 14 557 |
THUCNews | 10 | 65 000 | 50 000 | 5 000 | 10 000 |
数据集 | 词嵌入 维度 | Bi-LSTM 隐藏层数 | 学习率 | Dropout probability | Batch size | Epoch |
---|---|---|---|---|---|---|
RSPWO | 256 | 128 | 5.00E-05 | 0.1 | 64 | 15 |
ZJPWO | 256 | 128 | 5.00E-05 | 0.1 | 128 | 10 |
THUCNews | 256 | 128 | 5.00E-05 | 0.1 | 128 | 15 |
Tab. 2 Hyperparameter setting on different datasets
数据集 | 词嵌入 维度 | Bi-LSTM 隐藏层数 | 学习率 | Dropout probability | Batch size | Epoch |
---|---|---|---|---|---|---|
RSPWO | 256 | 128 | 5.00E-05 | 0.1 | 64 | 15 |
ZJPWO | 256 | 128 | 5.00E-05 | 0.1 | 128 | 10 |
THUCNews | 256 | 128 | 5.00E-05 | 0.1 | 128 | 15 |
模型 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
TextCNN | RSPWO | 93.75 | 90.03 | 91.59 | 92.93 |
ZJPWO | 89.94 | 93.48 | 90.94 | 96.41 | |
THUCNews | 92.14 | 92.04 | 91.93 | 92.04 | |
TextRNN | RSPWO | 92.01 | 91.00 | 91.47 | 93.43 |
ZJPWO | 91.78 | 89.55 | 90.57 | 96.64 | |
THUCNews | 89.72 | 88.44 | 87.91 | 88.44 | |
GAT | RSPWO | 95.05 | 93.35 | 94.03 | 94.68 |
ZJPWO | 89.36 | 89.22 | 88.61 | 95.31 | |
THUCNews | 90.41 | 90.04 | 90.12 | 90.04 | |
BERT | RSPWO | 95.52 | 92.92 | 94.04 | 94.75 |
ZJPWO | 91.30 | 94.06 | 92.11 | 96.96 | |
THUCNews | 93.81 | 93.76 | 93.69 | 93.76 | |
BERT‑CNN | RSPWO | 95.34 | 95.52 | 95.40 | 95.51 |
ZJPWO | 92.24 | 94.78 | 94.22 | 97.32 | |
THUCNews | 93.88 | 93.73 | 93.65 | 93.73 | |
MiniRBT | RSPWO | 92.60 | 88.45 | 89.79 | 92.38 |
ZJPWO | 91.32 | 94.52 | 92.39 | 97.25 | |
THUCNews | 95.28 | 95.25 | 95.22 | 95.25 | |
MiniRBT‑CNN | RSPWO | 89.15 | 90.67 | 89.66 | 91.54 |
ZJPWO | 92.55 | 92.59 | 91.91 | 96.98 | |
THUCNews | 94.97 | 94.98 | 94.92 | 94.98 | |
BRsyn-caps | RSPWO | 96.31 | 96.79 | 96.52 | 96.37 |
ZJPWO | 90.91 | 96.67 | 93.35 | 97.34 | |
THUCNews | 94.76 | 94.76 | 94.76 | 94.76 | |
本文模型 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 | |
THUCNews | 95.52 | 95.47 | 95.43 | 95.47 |
Tab. 3 Performance comparison of different models
模型 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
TextCNN | RSPWO | 93.75 | 90.03 | 91.59 | 92.93 |
ZJPWO | 89.94 | 93.48 | 90.94 | 96.41 | |
THUCNews | 92.14 | 92.04 | 91.93 | 92.04 | |
TextRNN | RSPWO | 92.01 | 91.00 | 91.47 | 93.43 |
ZJPWO | 91.78 | 89.55 | 90.57 | 96.64 | |
THUCNews | 89.72 | 88.44 | 87.91 | 88.44 | |
GAT | RSPWO | 95.05 | 93.35 | 94.03 | 94.68 |
ZJPWO | 89.36 | 89.22 | 88.61 | 95.31 | |
THUCNews | 90.41 | 90.04 | 90.12 | 90.04 | |
BERT | RSPWO | 95.52 | 92.92 | 94.04 | 94.75 |
ZJPWO | 91.30 | 94.06 | 92.11 | 96.96 | |
THUCNews | 93.81 | 93.76 | 93.69 | 93.76 | |
BERT‑CNN | RSPWO | 95.34 | 95.52 | 95.40 | 95.51 |
ZJPWO | 92.24 | 94.78 | 94.22 | 97.32 | |
THUCNews | 93.88 | 93.73 | 93.65 | 93.73 | |
MiniRBT | RSPWO | 92.60 | 88.45 | 89.79 | 92.38 |
ZJPWO | 91.32 | 94.52 | 92.39 | 97.25 | |
THUCNews | 95.28 | 95.25 | 95.22 | 95.25 | |
MiniRBT‑CNN | RSPWO | 89.15 | 90.67 | 89.66 | 91.54 |
ZJPWO | 92.55 | 92.59 | 91.91 | 96.98 | |
THUCNews | 94.97 | 94.98 | 94.92 | 94.98 | |
BRsyn-caps | RSPWO | 96.31 | 96.79 | 96.52 | 96.37 |
ZJPWO | 90.91 | 96.67 | 93.35 | 97.34 | |
THUCNews | 94.76 | 94.76 | 94.76 | 94.76 | |
本文模型 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 | |
THUCNews | 95.52 | 95.47 | 95.43 | 95.47 |
模型 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
文献[ | RSPWO | 94.05 | 91.11 | 92.45 | 93.47 |
ZJPWO | 92.28 | 93.20 | 92.71 | 96.63 | |
文献[ | RSPWO | 93.30 | 90.67 | 91.89 | 93.65 |
ZJPWO | 91.97 | 92.42 | 92.07 | 97.03 | |
文献[ | RSPWO | 92.88 | 92.21 | 92.47 | 93.54 |
ZJPWO | 91.78 | 89.55 | 90.57 | 96.64 | |
文献[ | RSPWO | 95.94 | 96.75 | 96.28 | 96.24 |
ZJPWO | 92.22 | 94.25 | 93.05 | 97.04 | |
EPAT-BERT[ | RSPWO | 94.63 | 96.54 | 95.29 | 95.50 |
ZJPWO | 90.80 | 96.51 | 93.21 | 96.91 | |
本文模型 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 |
Tab. 4 Comparison of experimental results of different models for power work orders classification
模型 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
文献[ | RSPWO | 94.05 | 91.11 | 92.45 | 93.47 |
ZJPWO | 92.28 | 93.20 | 92.71 | 96.63 | |
文献[ | RSPWO | 93.30 | 90.67 | 91.89 | 93.65 |
ZJPWO | 91.97 | 92.42 | 92.07 | 97.03 | |
文献[ | RSPWO | 92.88 | 92.21 | 92.47 | 93.54 |
ZJPWO | 91.78 | 89.55 | 90.57 | 96.64 | |
文献[ | RSPWO | 95.94 | 96.75 | 96.28 | 96.24 |
ZJPWO | 92.22 | 94.25 | 93.05 | 97.04 | |
EPAT-BERT[ | RSPWO | 94.63 | 96.54 | 95.29 | 95.50 |
ZJPWO | 90.80 | 96.51 | 93.21 | 96.91 | |
本文模型 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 |
消融方法 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
无GAT | RSPWO | 93.72 | 93.08 | 93.36 | 94.64 |
ZJPWO | 91.80 | 87.05 | 88.80 | 97.19 | |
THUCNews | 94.45 | 94.41 | 94.34 | 94.41 | |
无LSTM | RSPWO | 95.38 | 94.54 | 94.91 | 95.09 |
ZJPWO | 91.45 | 93.02 | 92.18 | 97.11 | |
THUCNews | 95.23 | 95.19 | 95.12 | 95.19 | |
无MiniRBT | RSPWO | 94.06 | 92.25 | 93.03 | 93.66 |
ZJPWO | 90.79 | 92.38 | 91.46 | 96.94 | |
THUCNews | 92.16 | 91.98 | 91.80 | 91.98 | |
无EDA | RSPWO | 90.09 | 88.32 | 88.91 | 90.83 |
ZJPWO | — | — | — | — | |
THUCNews | — | — | — | — | |
无LS | RSPWO | 92.11 | 89.11 | 90.47 | 92.07 |
ZJPWO | 91.61 | 93.62 | 92.43 | 96.96 | |
THUCNews | 93.94 | 93.71 | 93.71 | 93.71 | |
本文方法 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 | |
THUCNews | 95.52 | 95.47 | 95.43 | 95.47 |
Tab. 5 Ablation experimental results of different modules
消融方法 | 数据集 | P | R | F1 | Accuracy |
---|---|---|---|---|---|
无GAT | RSPWO | 93.72 | 93.08 | 93.36 | 94.64 |
ZJPWO | 91.80 | 87.05 | 88.80 | 97.19 | |
THUCNews | 94.45 | 94.41 | 94.34 | 94.41 | |
无LSTM | RSPWO | 95.38 | 94.54 | 94.91 | 95.09 |
ZJPWO | 91.45 | 93.02 | 92.18 | 97.11 | |
THUCNews | 95.23 | 95.19 | 95.12 | 95.19 | |
无MiniRBT | RSPWO | 94.06 | 92.25 | 93.03 | 93.66 |
ZJPWO | 90.79 | 92.38 | 91.46 | 96.94 | |
THUCNews | 92.16 | 91.98 | 91.80 | 91.98 | |
无EDA | RSPWO | 90.09 | 88.32 | 88.91 | 90.83 |
ZJPWO | — | — | — | — | |
THUCNews | — | — | — | — | |
无LS | RSPWO | 92.11 | 89.11 | 90.47 | 92.07 |
ZJPWO | 91.61 | 93.62 | 92.43 | 96.96 | |
THUCNews | 93.94 | 93.71 | 93.71 | 93.71 | |
本文方法 | RSPWO | 97.39 | 97.24 | 97.31 | 96.98 |
ZJPWO | 92.57 | 97.16 | 94.61 | 97.36 | |
THUCNews | 95.52 | 95.47 | 95.43 | 95.47 |
1 | ZONG Y, WANG D, WANG X, et al. Characteristic portrait and analysis method of power grid work orders based on statistics[C]// Proceedings of the 2nd International Conference on Control and Intelligent Robotics. New York: ACM, 2022: 717-723. |
2 | YU Y, HE W, KANG Y M, et al. Leveraging continuous prompt for few-shot named entity recognition in electric power domain with meta-learning[J]. Data Intelligence, 2023, 5(2): 494-509. |
3 | MOSCATO V, NAPOLANO G, POSTIGLIONE M, et al. Multi-task learning for few-shot biomedical relation extraction[J]. Artificial Intelligence Review, 2023, 56(11): 13743-13763. |
4 | BANG J, PARK J, PARK J. GACaps-HTC: graph attention capsule network for hierarchical text classification[J]. Applied Intelligence, 2023, 53(17): 20577-20594. |
5 | YIN Y, ZENG J, SU J, et al. Multi-modal graph contrastive encoding for neural machine translation[J]. Artificial Intelligence, 2023, 323: No.103986. |
6 | GEMAN S, BIENENSTOCK E, DOURSAT R. Neural networks and the bias/variance dilemma[J]. Neural Computation, 1992, 4(1): 1-58. |
7 | WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6382-6388. |
8 | YAO X, YANG Z, CUI Y, et al. MiniRBT: a two-stage distilled small Chinese pre-trained model[EB/OL]. [2024-08-11].. |
9 | 刘鹏. 基于深度学习的电力工单文本挖掘[D]. 南昌:南昌大学, 2022:6-23. |
LIU P. Text mining of electricity work order based on deep learning[D]. Nanchang: Nanchang University, 2022:6-23. | |
10 | 孙茂松,李景阳,郭志芃,等. THUCTC:一个高效的中文文本分类工具包[EB/OL]. [2024-08-11]., |
LI J Y, GUO Z P, et al. THUCTC: an efficient Chinese text classifier[EB/OL]. [2024-08-11]. | |
11 | 曹湘,李誉坤,钱叶,等. 基于混合神经网络的电力短文本分类方法研究[J]. 计算机与数字工程, 2019, 47(5):1145-1150. |
CAO X, LI Y K, QIAN Y, et al. Short text classification of electric power based on hybrid neural network[J]. Computer and Digital Engineering, 2019, 47(5):1145-1150. | |
12 | 冯斌,张又文,唐昕,等. 基于BiLSTM-Attention神经网络的电力设备缺陷文本挖掘[J]. 中国电机工程学报, 2020, 40(S1):1-10. |
FENG B, ZHANG Y W, TANG X, et al. Power equipment defect record text mining based on BiLSTM-Attention neural network[J]. Proceedings of the CSEE, 2020, 40(S1):1-10. | |
13 | MENG J, LI Y, LIU C, et al. Classification of customer service tickets in power system based on character and word level semantic understanding[C]// Proceedings of the 2021 China International Conference on Electricity Distribution. Piscataway: IEEE, 2021: 1062-1066. |
14 | MENG Q, SONG Y, MU J, et al. Electric power audit text classification with multi-grained pre-trained language model[J]. IEEE Access, 2023, 11: 13510-13518. |
15 | 田园,原野,刘海斌,等. 基于BERT预训练语言模型的电网设备缺陷文本分类[J]. 南京理工大学学报, 2020, 44(4):446-453. |
TIAN Y, YUAN Y, LIU H B, et al. BERT pre-trained language model for defective text classification of power grid equipment[J]. Journal of Nanjing University of Science and Technology, 2020, 44(4):446-453. | |
16 | 付文杰,杨迪,马红明,等. 融合BTM和BERT的短文本分类方法[J]. 计算机工程与设计, 2022, 43(12):3421-3427. |
FU W J, YANG D, MA H M, et al. Short text classification method based on BTM and BERT[J]. Computer Engineering and Design, 2022, 43(12):3421-3427. | |
17 | ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6: No.11. |
18 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-08-11].. |
19 | CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514. |
20 | MÜLLER R, KORNBLITH S, HINTON G E. When does label smoothing help?[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 4694-4703. |
21 | 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:23-29. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016:23-29. | |
22 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
23 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
24 | LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 2873-2879. |
25 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
26 | WAN C X, LI B. Financial causal sentence recognition based on BERT-CNN text classification[J]. The Journal of Supercomputing, 2022, 78(5): 6503-6527. |
27 | LUO J, HE C, LUO H. BRsyn-Caps: Chinese text classification using capsule network based on BERT and dependency syntax[J]. IEICE Transactions on Information and Systems, 2024, E107-D(2): 212-219. |
[1] | Jie YANG, Tashi NYIMA, Dongrub RINCHEN, Jindong QI, Dondrub TSHERING. Tibetan word segmentation system based on pre-trained model tokenization reconstruction [J]. Journal of Computer Applications, 2025, 45(4): 1199-1204. |
[2] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[3] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[4] | Chenyang LI, Long ZHANG, Qiusheng ZHENG, Shaohua QIAN. Multivariate controllable text generation based on diffusion sequences [J]. Journal of Computer Applications, 2024, 44(8): 2414-2420. |
[5] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[6] | Zhengyu ZHAO, Jing LUO, Xinhui TU. Information retrieval method based on multi-granularity semantic fusion [J]. Journal of Computer Applications, 2024, 44(6): 1775-1780. |
[7] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[8] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[9] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[10] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[11] | Hang YU, Yanling ZHOU, Mengxin ZHAI, Han LIU. Text classification based on pre-training model and label fusion [J]. Journal of Computer Applications, 2024, 44(3): 709-714. |
[12] | Jiawei ZHANG, Guandong GAO, Ke XIAO, Shengzun SONG. Violent crime hierarchy algorithm by joint modeling of improved hierarchical attention network and TextCNN [J]. Journal of Computer Applications, 2024, 44(2): 403-410. |
[13] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[14] | Xiang LIN, Biao JIN, Weijing YOU, Zhiqiang YAO, Jinbo XIONG. Model integrity verification framework of deep neural network based on fragile fingerprint [J]. Journal of Computer Applications, 2024, 44(11): 3479-3486. |
[15] | Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning [J]. Journal of Computer Applications, 2024, 44(11): 3371-3378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||