Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2414-2420.DOI: 10.11772/j.issn.1001-9081.2023081137
• Artificial intelligence • Previous Articles Next Articles
Chenyang LI1,2, Long ZHANG1,2(
), Qiusheng ZHENG1,2, Shaohua QIAN3
Received:2023-08-24
Revised:2023-11-04
Accepted:2023-11-14
Online:2024-08-22
Published:2024-08-10
Contact:
Long ZHANG
About author:LI Chenyang, born in 1999, M. S. candidate. His researchinterests include natural language processing, text generation.Supported by:通讯作者:
张龙
作者简介:李晨阳(1999—),男,河南安阳人,硕士研究生,CCF会员,主要研究方向:自然语言处理、文本生成基金资助:CLC Number:
Chenyang LI, Long ZHANG, Qiusheng ZHENG, Shaohua QIAN. Multivariate controllable text generation based on diffusion sequences[J]. Journal of Computer Applications, 2024, 44(8): 2414-2420.
李晨阳, 张龙, 郑秋生, 钱少华. 基于扩散序列的多元可控文本生成[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2414-2420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081137
| 主题属性 | 评论数 | 主题属性 | 评论数 |
|---|---|---|---|
| 电脑 | 3 407 | 图书 | 2 773 |
| 酒店 | 2 910 |
Tab. 1 Distribution of theme attributes in dataset A
| 主题属性 | 评论数 | 主题属性 | 评论数 |
|---|---|---|---|
| 电脑 | 3 407 | 图书 | 2 773 |
| 酒店 | 2 910 |
| 情感属性 | 评论数 | 情感属性 | 评论数 |
|---|---|---|---|
| 悲伤 | 2 741 | 喜欢 | 2 435 |
| 害怕 | 13 | 幸福 | 2 100 |
| 愤怒 | 824 | 厌恶 | 749 |
| 惊讶 | 228 |
Tab. 2 Distribution of fine-grained sentiment attributes in dataset A
| 情感属性 | 评论数 | 情感属性 | 评论数 |
|---|---|---|---|
| 悲伤 | 2 741 | 喜欢 | 2 435 |
| 害怕 | 13 | 幸福 | 2 100 |
| 愤怒 | 824 | 厌恶 | 749 |
| 惊讶 | 228 |
| 方法 | 预训练模型 | 时间步 | PPL↓ | |
|---|---|---|---|---|
| 数据集A | 数据集B | |||
| DiffuSeq-PT | ERNIE | 32 | 210.110 | 145.930 |
| 64 | 63.780 | 83.650 | ||
| 256 | 46.350 | 44.590 | ||
| 512 | 20.100 | 33.735 | ||
| D3PM | 无 | 512 | 225.150 | 152.750 |
| Diffusion-LM | 无 | 2 000 | 196.164 | 130.145 |
| DiffuSeq | 无 | 2 000 | 34.418 | 43.197 |
| SeqDiffuSeq | 无 | 2 000 | 67.877 | 47.917 |
| GPT-2 | GPT | 1 | 38.700 | 35.780 |
Tab. 3 PPL scores of various models at different time steps
| 方法 | 预训练模型 | 时间步 | PPL↓ | |
|---|---|---|---|---|
| 数据集A | 数据集B | |||
| DiffuSeq-PT | ERNIE | 32 | 210.110 | 145.930 |
| 64 | 63.780 | 83.650 | ||
| 256 | 46.350 | 44.590 | ||
| 512 | 20.100 | 33.735 | ||
| D3PM | 无 | 512 | 225.150 | 152.750 |
| Diffusion-LM | 无 | 2 000 | 196.164 | 130.145 |
| DiffuSeq | 无 | 2 000 | 34.418 | 43.197 |
| SeqDiffuSeq | 无 | 2 000 | 67.877 | 47.917 |
| GPT-2 | GPT | 1 | 38.700 | 35.780 |
| 方法 | 数据集A | 数据集B | ||||||
|---|---|---|---|---|---|---|---|---|
| BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ | |
| Diffusion-LM | 0.256 | 0.402 | 0.547 | 196.164 | 0.268 | 0.451 | 0.587 | 130.145 |
| DiffuSeq | 0.478 | 0.499 | 0.567 | 34.418 | 0.875 | 0.917 | 0.930 | 43.197 |
| SeqDiffuSeq | 0.476 | 0.571 | 0.589 | 67.877 | 0.501 | 0.627 | 0.711 | 47.917 |
| DiffuSeq-PT(无prompt) | 0.557 | 0.454 | 0.691 | 21.493 | 0.923 | 0.568 | 0.932 | 35.917 |
| DiffuSeq-PT | 0.569 | 0.450 | 0.697 | 20.100 | 0.958 | 0.565 | 0.944 | 33.735 |
Tab. 4 Comparison of evaluation metrics for various models
| 方法 | 数据集A | 数据集B | ||||||
|---|---|---|---|---|---|---|---|---|
| BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ | |
| Diffusion-LM | 0.256 | 0.402 | 0.547 | 196.164 | 0.268 | 0.451 | 0.587 | 130.145 |
| DiffuSeq | 0.478 | 0.499 | 0.567 | 34.418 | 0.875 | 0.917 | 0.930 | 43.197 |
| SeqDiffuSeq | 0.476 | 0.571 | 0.589 | 67.877 | 0.501 | 0.627 | 0.711 | 47.917 |
| DiffuSeq-PT(无prompt) | 0.557 | 0.454 | 0.691 | 21.493 | 0.923 | 0.568 | 0.932 | 35.917 |
| DiffuSeq-PT | 0.569 | 0.450 | 0.697 | 20.100 | 0.958 | 0.565 | 0.944 | 33.735 |
| 控制属性 | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ |
|---|---|---|---|---|
| 无属性 | 0.567 | 0.430 | 0.695 | 21.069 |
| 主题 | 0.565 | 0.461 | 0.697 | 20.372 |
| 2情感 | 0.565 | 0.465 | 0.697 | 20.493 |
| 7情绪 | 0.571 | 0.474 | 0.696 | 21.037 |
| 主题+2情感 | 0.569 | 0.466 | 0.697 | 20.100 |
| 主题+7情绪 | 0.559 | 0.450 | 0.694 | 20.675 |
Tab. 5 Comparison of evaluation metrics for various control attribute combinations in dataset A
| 控制属性 | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ |
|---|---|---|---|---|
| 无属性 | 0.567 | 0.430 | 0.695 | 21.069 |
| 主题 | 0.565 | 0.461 | 0.697 | 20.372 |
| 2情感 | 0.565 | 0.465 | 0.697 | 20.493 |
| 7情绪 | 0.571 | 0.474 | 0.696 | 21.037 |
| 主题+2情感 | 0.569 | 0.466 | 0.697 | 20.100 |
| 主题+7情绪 | 0.559 | 0.450 | 0.694 | 20.675 |
| 控制属性 | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ |
|---|---|---|---|---|
| 无属性 | 0.962 | 0.553 | 0.949 | 33.352 |
| 辩题 | 0.965 | 0.552 | 0.943 | 34.424 |
| 立场 | 0.959 | 0.566 | 0.941 | 33.550 |
| 辩题+立场 | 0.958 | 0.565 | 0.944 | 33.735 |
Tab. 6 Comparison of evaluation metrics for various control attribute combinations in dataset B
| 控制属性 | BLEU↑ | self_BLEU↓ | BERTScore↑ | PPL↓ |
|---|---|---|---|---|
| 无属性 | 0.962 | 0.553 | 0.949 | 33.352 |
| 辩题 | 0.965 | 0.552 | 0.943 | 34.424 |
| 立场 | 0.959 | 0.566 | 0.941 | 33.550 |
| 辩题+立场 | 0.958 | 0.565 | 0.944 | 33.735 |
| 情感属性 | 评论数 | 准确率/% | 情感属性 | 评论数 | 准确率/% |
|---|---|---|---|---|---|
| 悲伤 | 2 741 | 98 | 厌恶 | 749 | 97 |
| 喜欢 | 2 435 | 97 | 惊讶 | 228 | 94 |
| 幸福 | 2 100 | 98 | 害怕 | 13 | 32 |
| 愤怒 | 824 | 96 |
Tab. 7 Number and predictive accuracy of each corresponding emotion
| 情感属性 | 评论数 | 准确率/% | 情感属性 | 评论数 | 准确率/% |
|---|---|---|---|---|---|
| 悲伤 | 2 741 | 98 | 厌恶 | 749 | 97 |
| 喜欢 | 2 435 | 97 | 惊讶 | 228 | 94 |
| 幸福 | 2 100 | 98 | 害怕 | 13 | 32 |
| 愤怒 | 824 | 96 |
| 主题 | 情感 | 输出内容 | 是否 符合 |
|---|---|---|---|
| 酒店 | 幸福 | 服务态度不错,位置不错,停车方便。房间很不错,房间比较大,干净。 | √ |
| 喜欢 | 房间还不错,环境还不错。 | √ | |
| 害怕 | 价格偏高,服务太差了。 | × | |
| 电脑 | 悲伤 | 不好看,散热还是有点问题,内存太小了。 | √ |
| 喜欢 | 性价比比较均衡,配置均衡,性能散热都很不错,电池4小时,使用中来说还行。 | √ | |
| 幸福 | 本本做工不错,价格又高。同价位的机器,性价比还是比较高的。 | √ | |
| 图书 | 喜欢 | 这本书的质量很不错,虽然其中的书中的内容不是通俗易懂的部分,但却是一本值得一读的一本书。 | √ |
| 愤怒 | 图书的内容有点搞人的感觉,! | √ | |
| 悲伤 | 不太喜欢一些人的描写,感觉不是一些很实用的东东。 | √ |
Tab. 8 Controllable generation results in dataset A
| 主题 | 情感 | 输出内容 | 是否 符合 |
|---|---|---|---|
| 酒店 | 幸福 | 服务态度不错,位置不错,停车方便。房间很不错,房间比较大,干净。 | √ |
| 喜欢 | 房间还不错,环境还不错。 | √ | |
| 害怕 | 价格偏高,服务太差了。 | × | |
| 电脑 | 悲伤 | 不好看,散热还是有点问题,内存太小了。 | √ |
| 喜欢 | 性价比比较均衡,配置均衡,性能散热都很不错,电池4小时,使用中来说还行。 | √ | |
| 幸福 | 本本做工不错,价格又高。同价位的机器,性价比还是比较高的。 | √ | |
| 图书 | 喜欢 | 这本书的质量很不错,虽然其中的书中的内容不是通俗易懂的部分,但却是一本值得一读的一本书。 | √ |
| 愤怒 | 图书的内容有点搞人的感觉,! | √ | |
| 悲伤 | 不太喜欢一些人的描写,感觉不是一些很实用的东东。 | √ |
| 辩题 | 辩方 | 输出内容 | 是否符合 |
|---|---|---|---|
| 被同化比被排斥可怕 | 正方 | 谢谢主席大家好,今天我方认为被同化更可怕。个体必然生活在某种环境中,所以被排斥或被同化的前提是个体与生活的环境存在差异。我们发现任何东西可怕的原因都是它让我们失去了可贵的东西,所以今天我们判断更可怕的标准是被排斥和被同化,何者让我们失去的东西更珍贵。 | √ |
| 反方 | 而且我方还发现很多时候被排斥会带来很多心理疾病,甚至克服了人对死亡最本能的恐惧,所以我发现觉得这个负面影响是无限大的,你方从头到尾都没有跟我方论证的一个东西,就是被同化在本质上究竟失去了什么? | √ |
Tab. 9 Controllable generation results in dataset B
| 辩题 | 辩方 | 输出内容 | 是否符合 |
|---|---|---|---|
| 被同化比被排斥可怕 | 正方 | 谢谢主席大家好,今天我方认为被同化更可怕。个体必然生活在某种环境中,所以被排斥或被同化的前提是个体与生活的环境存在差异。我们发现任何东西可怕的原因都是它让我们失去了可贵的东西,所以今天我们判断更可怕的标准是被排斥和被同化,何者让我们失去的东西更珍贵。 | √ |
| 反方 | 而且我方还发现很多时候被排斥会带来很多心理疾病,甚至克服了人对死亡最本能的恐惧,所以我发现觉得这个负面影响是无限大的,你方从头到尾都没有跟我方论证的一个东西,就是被同化在本质上究竟失去了什么? | √ |
| 1 | 刘欣然, 徐雅斌, 李继先. 网评贴文自动生成方法研究[J]. 数据分析与知识发现, 2023, 7(4): 101-113. |
| LIU X R, XU Y B, LI J X. Method for automatically generating online comments[J]. Data Analysis and Knowledge Discovery, 2023, 7(4): 101-113. | |
| 2 | GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]// Proceedings of the 2017 International Conference on Machine Learning. New York: JMLR.org,2017: 1243-1252. |
| 3 | 林志兴,王立可.基于深度特征和Seq2Seq模型的网络态势预测方法[J].计算机应用,2020, 40(8): 2241-2247. |
| LIN Z X, WANG L K. Network situation prediction method based on deep feature and Seq2Seq model [J]. Journal of Computer Applications,2020, 40(8): 2241-2247. | |
| 4 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000-6010. |
| 5 | LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension [EB/OL]. (2019-10-29) [2023-07-01]. . |
| 6 | FRÖHLING L, ZUBIAGA A. Feature-based detection of automated language models: tackling GPT-2, GPT-3 and Grover[J]. PeerJ Computer Science, 2021, 7: e443. |
| 7 | ZHANG H, SONG H, LI S, et al. A survey of controllable text generation using Transformer-based pre-trained language models[J]. ACM Computing Surveys, 2023, 56(3): Article No. 64. |
| 8 | SARZYNSKA-WAWER J, WAWER A, PAWLAK A, et al. Detecting formal thought disorder by deep contextualized word representations[J]. Psychiatry Research, 2021, 304: 114135. |
| 9 | YANG K, LIU D, LEI W, et al. Tailor: a prompt-based approach to attribute-based controlled text generation [EB/OL]. (2022-04-18) [2023-07-01]. . |
| 10 | LI J, TANG T, NIE J-Y, et al. Learning to transfer prompts for text generation [EB/OL]. (2022-05-15)[2023-07-01]. . |
| 11 | GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: a neural language model for customizable affective text generation [EB/OL].[2023-07-01]. . |
| 12 | DATHATHRI S, MADOTTO A, LAN J, et al. Plug and play language models: a simple approach to controlled text generation [EB/OL]. [2022-03-03]. . |
| 13 | CHAN A, Y-S ONG, PUNG B, et al. CoCon: a self-supervised approach for controlled text generation [EB/OL]. [2022-06-10]. . |
| 14 | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. |
| 15 | NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]// Proceedings of the 2021 International Conference on Machine Learning. New York: JMLR.org, 2021: 8162-8171. |
| 16 | CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65. |
| 17 | AUSTIN J, JOHNSON D D, HO J, et al. Structured denoising diffusion models in discrete state-spaces[J]. Advances in Neural Information Processing Systems, 2021, 34: 17981-17993. |
| 18 | LI X L, THICKSTUN J, GULRAJANI I, et al. Diffusion-LM improves controllable text generation[EB/OL]. (2022-05-27)[2023-07-01]. . |
| 19 | GONG S, LI M, FENG J, et al. DiffuSeq: Sequence to sequence text generation with diffusion models [EB/OL]. [2023-02-14]. . |
| 20 | KESKAR N S, McCANN B, VARSHNEY L R, et al. CTRL: a conditional transformer language model for controllable generation [EB/OL]. [2023-07-01]. . |
| 21 | YANG K, KLEIN D. FUDGE: controlled text generation with future discriminators [EB/OL]. [2021-08-15]. . |
| 22 | 李雪晴, 王石, 王朱君, 等. 自然语言生成综述[J]. 计算机应用, 2021, 41(5): 1227-1235. |
| LI X Q, WANG S, WANG Z J, et al. Summarization of natural language generation[J]. Journal of Computer Applications, 2021, 41(5): 1227-1235. | |
| 23 | 刘晓明, 张兆晗, 杨晨阳, 等.在线社交网络文本内容对抗技术[J].计算机学报,2022,45(8):1571-1597. |
| LIU X M, ZHANG Z H, YANG C Y, et al. Adversarial technology of text content on online social networks[J]. Chinese Journal of Computers, 2022, 45(8): 1571-1597. | |
| 24 | YANG L, ZHANG Z, SONG Y, et al. Diffusion models: a comprehensive survey of methods and applications [EB/OL]. [2023-10-11]. . |
| 25 | SUN Y, WANG S, FENG S, et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation [EB/OL]. (2021-07-05)[2023-07-01]. . |
| 26 | LI M, LONG Y, QIN L, et al. Emotion corpus construction based on selection from hashtags[C]// Proceedings of the Tenth International Conference on Language Resources and Evaluation. Paris: European Language Resources Association,2016: 1845-1849. |
| 27 | YUAN J, CHENG L, HE R, et al. Overview of argumentative text understanding for AI debater challenge[C]// Proceedings of the 2021 International Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2021: 548-568. |
| 28 | REITER E. A structured review of the validity of BLEU[J].Computational Linguistics, 2018, 44(3):393-401. |
| 29 | WIETING J, BERG-KIRKPATRICK T, GIMPEL K, et al. Beyond BLEU: training neural machine translation with semantic similarity [EB/OL]. (2019-09-14) [2023-07-01]. . |
| 30 | ZHANG T, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT [EB/OL]. (2020-02-24)[2023-07-01]. . |
| 31 | MEISTER C, COTTERELL R. Language model evaluation beyond perplexity[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 5328-5339. |
| 32 | YUAN H, YUAN Z, TAN C, et al. SeqDiffuSeq: text diffusion with encoder-decoder transformers [EB/OL]. [2023-05-22]. . |
| 33 | LI C, ZHANG L, ZHENG Q, et al. User preference prediction for online dialogue systems based on pre-trained large model[C]// Proceedings of the 2023 International Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2023: 349-357. |
| [1] | Yuxin HUANG, Jialong XU, Zhengtao YU, Shukai HOU, Jiaqi ZHOU. Unsupervised text sentiment transfer method based on generation prompt [J]. Journal of Computer Applications, 2024, 44(9): 2667-2673. |
| [2] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. |
| [3] | Xindong YOU, Yingzi WEN, Xinpeng SHE, Xueqiang LYU. Triplet extraction method for mine electromechanical equipment field [J]. Journal of Computer Applications, 2024, 44(7): 2026-2033. |
| [4] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. |
| [5] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
| [6] | Zhengyu ZHAO, Jing LUO, Xinhui TU. Information retrieval method based on multi-granularity semantic fusion [J]. Journal of Computer Applications, 2024, 44(6): 1775-1780. |
| [7] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
| [8] | Jinsong XU, Ming ZHU, Zhiqiang LI, Shijie GUO. Location control method for generated objects by diffusion model with exciting and pooling attention [J]. Journal of Computer Applications, 2024, 44(4): 1093-1098. |
| [9] | Yingjie GAO, Min LIN, Siriguleng, Bin LI, Shujun ZHANG. Prompt learning method for ancient text sentence segmentation and punctuation based on span-extracted prototypical network [J]. Journal of Computer Applications, 2024, 44(12): 3815-3822. |
| [10] | Yusheng LIU, Xuezhong XIAO. High-fidelity image editing based on fine-tuning of diffusion model [J]. Journal of Computer Applications, 2024, 44(11): 3574-3580. |
| [11] | Xiang LIN, Biao JIN, Weijing YOU, Zhiqiang YAO, Jinbo XIONG. Model integrity verification framework of deep neural network based on fragile fingerprint [J]. Journal of Computer Applications, 2024, 44(11): 3479-3486. |
| [12] | Yushan JIANG, Yangsen ZHANG. Large language model-driven stance-aware fact-checking [J]. Journal of Computer Applications, 2024, 44(10): 3067-3073. |
| [13] | Jinke DENG, Wenjie DUAN, Shunxiang ZHANG, Yuqing WANG, Shuyu LI, Jiawei LI. Complex causal relationship extraction based on prompt enhancement and bi-graph attention network [J]. Journal of Computer Applications, 2024, 44(10): 3081-3089. |
| [14] | Yuelin TIAN, Ruizhang HUANG, Lina REN. Scholar fine-grained information extraction method fused with local semantic features [J]. Journal of Computer Applications, 2023, 43(9): 2707-2714. |
| [15] | Xinyue ZHANG, Rong LIU, Chiyu WEI, Ke FANG. Aspect-based sentiment analysis method with integrating prompt knowledge [J]. Journal of Computer Applications, 2023, 43(9): 2753-2759. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||