Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 98-105.DOI: 10.11772/j.issn.1001-9081.2023121750
• Artificial intelligence • Previous Articles Next Articles
Received:2023-12-19
															
							
																	Revised:2024-02-06
															
							
																	Accepted:2024-02-28
															
							
							
																	Online:2024-03-13
															
							
																	Published:2025-01-10
															
							
						Contact:
								Lichen ZHANG   
													About author:HU Jianpeng, born in 1997, M. S. candidate. His research interests include time series analysis, cyber-physical system, distributed computing.				
													Supported by:通讯作者:
					张立臣
							作者简介:胡健鹏(1997—),男,广东中山人,硕士研究生,主要研究方向:时间序列分析、信息物理系统、分布式计算;
				
							基金资助:CLC Number:
Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction[J]. Journal of Computer Applications, 2025, 45(1): 98-105.
胡健鹏, 张立臣. 面向多时间步风功率预测的深度时空网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 98-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121750
| 数据集 | 总时长/d | 机组数 | 数据缺失率/% | 
|---|---|---|---|
| WindFarm1 | 245 | 134 | 1.05 | 
| WindFarm2 | 125 | 31 | 1.32 | 
Tab. 1 Overall situation of datasets
| 数据集 | 总时长/d | 机组数 | 数据缺失率/% | 
|---|---|---|---|
| WindFarm1 | 245 | 134 | 1.05 | 
| WindFarm2 | 125 | 31 | 1.32 | 
| 名称 | 含义 | 
|---|---|
| TurbID | 机组编号,类型:字符串 | 
| Day | 天数,单位:天,类型:整型 | 
| Tmstamp | 时间戳,字符串,形如:HH:MM | 
| Wspd | 风速,单位:m/s,类型:浮点数 | 
| Wdir | 风向,单位:(°),类型:浮点数 | 
| Etmp | 环境温度,单位:℃,类型:浮点数 | 
| Ndir | 机舱偏航角度,单位:(°),类型:浮点数 | 
| Itmp | 机舱内温度,单位:℃,类型:浮点数 | 
| Pab1 | 桨叶角1,单位:(°),类型:浮点数 | 
| Pab2 | 桨叶角2,单位:(°),类型:浮点数 | 
| Pab3 | 桨叶角3,单位:(°),类型:浮点数 | 
| Prtv | 无功功率,单位:kW,类型:浮点数 | 
| Patv | 有功功率,单位:kW,类型:浮点数 | 
Tab. 2 Field description of datasets
| 名称 | 含义 | 
|---|---|
| TurbID | 机组编号,类型:字符串 | 
| Day | 天数,单位:天,类型:整型 | 
| Tmstamp | 时间戳,字符串,形如:HH:MM | 
| Wspd | 风速,单位:m/s,类型:浮点数 | 
| Wdir | 风向,单位:(°),类型:浮点数 | 
| Etmp | 环境温度,单位:℃,类型:浮点数 | 
| Ndir | 机舱偏航角度,单位:(°),类型:浮点数 | 
| Itmp | 机舱内温度,单位:℃,类型:浮点数 | 
| Pab1 | 桨叶角1,单位:(°),类型:浮点数 | 
| Pab2 | 桨叶角2,单位:(°),类型:浮点数 | 
| Pab3 | 桨叶角3,单位:(°),类型:浮点数 | 
| Prtv | 无功功率,单位:kW,类型:浮点数 | 
| Patv | 有功功率,单位:kW,类型:浮点数 | 
| 实验 | 预测模型 | MAE | RMSE | 
|---|---|---|---|
| 实验1 | GRU-SCINet | 49.37 | 61.98 | 
| 实验2 | GAT-SCINet | 48.69 | 56.04 | 
| 实验3 | GAT-GRU | 49.01 | 56.53 | 
| 实验4 | DSTN | 46.26 | 53.32 | 
Tab. 3 Results of ablation experiments
| 实验 | 预测模型 | MAE | RMSE | 
|---|---|---|---|
| 实验1 | GRU-SCINet | 49.37 | 61.98 | 
| 实验2 | GAT-SCINet | 48.69 | 56.04 | 
| 实验3 | GAT-GRU | 49.01 | 56.53 | 
| 实验4 | DSTN | 46.26 | 53.32 | 
| 数据集 | 预测步数 | 预测模型 | MAE | RMSE | 
|---|---|---|---|---|
| WindFarm1 | 72 | DSTN | 42.38 | 42.71 | 
| Bi-GRU | 44.26 | 50.16 | ||
| BERT | 48.66 | 47.89 | ||
| SCINet | 44.61 | 48.05 | ||
| Autoformer | 47.55 | 46.78 | ||
| LightGBM | 45.17 | 46.83 | ||
| Wavenet | 46.85 | 47.95 | ||
| 144 | DSTN | 43.55 | 49.32 | |
| Bi-GRU | 45.93 | 55.14 | ||
| BERT | 49.52 | 55.84 | ||
| SCINet | 47.81 | 51.76 | ||
| Autoformer | 48.25 | 54.36 | ||
| LightGBM | 48.68 | 53.87 | ||
| Wavenet | 48.93 | 53.73 | ||
| 288 | DSTN | 46.26 | 53.32 | |
| Bi-GRU | 52.63 | 64.12 | ||
| BERT | 52.93 | 63.58 | ||
| SCINet | 48.84 | 56.82 | ||
| Autoformer | 52.03 | 63.28 | ||
| LightGBM | 52.45 | 56.94 | ||
| Wavenet | 52.21 | 62.09 | ||
| WindFarm2 | 72 | DSTN | 48.21 | 50.99 | 
| Bi-GRU | 48.52 | 52.32 | ||
| BERT | 49.86 | 51.95 | ||
| SCINet | 48.95 | 51.21 | ||
| Autoformer | 49.55 | 51.97 | ||
| LightGBM | 49.24 | 51.87 | ||
| Wavenet | 49.85 | 52.77 | ||
| 144 | DSTN | 48.91 | 52.56 | |
| Bi-GRU | 49.11 | 53.26 | ||
| BERT | 50.06 | 53.52 | ||
| SCINet | 49.65 | 52.78 | ||
| Autoformer | 49.95 | 52.99 | ||
| LightGBM | 49.87 | 52.94 | ||
| Wavenet | 50.55 | 53.71 | ||
| 288 | DSTN | 49.86 | 53.08 | |
| Bi-GRU | 50.99 | 54.93 | ||
| BERT | 50.64 | 54.04 | ||
| SCINet | 50.20 | 53.30 | ||
| Autoformer | 50.60 | 54.06 | ||
| LightGBM | 50.92 | 53.96 | ||
| Wavenet | 51.50 | 55.38 | 
Tab. 4 Comparison of experimental results of different models
| 数据集 | 预测步数 | 预测模型 | MAE | RMSE | 
|---|---|---|---|---|
| WindFarm1 | 72 | DSTN | 42.38 | 42.71 | 
| Bi-GRU | 44.26 | 50.16 | ||
| BERT | 48.66 | 47.89 | ||
| SCINet | 44.61 | 48.05 | ||
| Autoformer | 47.55 | 46.78 | ||
| LightGBM | 45.17 | 46.83 | ||
| Wavenet | 46.85 | 47.95 | ||
| 144 | DSTN | 43.55 | 49.32 | |
| Bi-GRU | 45.93 | 55.14 | ||
| BERT | 49.52 | 55.84 | ||
| SCINet | 47.81 | 51.76 | ||
| Autoformer | 48.25 | 54.36 | ||
| LightGBM | 48.68 | 53.87 | ||
| Wavenet | 48.93 | 53.73 | ||
| 288 | DSTN | 46.26 | 53.32 | |
| Bi-GRU | 52.63 | 64.12 | ||
| BERT | 52.93 | 63.58 | ||
| SCINet | 48.84 | 56.82 | ||
| Autoformer | 52.03 | 63.28 | ||
| LightGBM | 52.45 | 56.94 | ||
| Wavenet | 52.21 | 62.09 | ||
| WindFarm2 | 72 | DSTN | 48.21 | 50.99 | 
| Bi-GRU | 48.52 | 52.32 | ||
| BERT | 49.86 | 51.95 | ||
| SCINet | 48.95 | 51.21 | ||
| Autoformer | 49.55 | 51.97 | ||
| LightGBM | 49.24 | 51.87 | ||
| Wavenet | 49.85 | 52.77 | ||
| 144 | DSTN | 48.91 | 52.56 | |
| Bi-GRU | 49.11 | 53.26 | ||
| BERT | 50.06 | 53.52 | ||
| SCINet | 49.65 | 52.78 | ||
| Autoformer | 49.95 | 52.99 | ||
| LightGBM | 49.87 | 52.94 | ||
| Wavenet | 50.55 | 53.71 | ||
| 288 | DSTN | 49.86 | 53.08 | |
| Bi-GRU | 50.99 | 54.93 | ||
| BERT | 50.64 | 54.04 | ||
| SCINet | 50.20 | 53.30 | ||
| Autoformer | 50.60 | 54.06 | ||
| LightGBM | 50.92 | 53.96 | ||
| Wavenet | 51.50 | 55.38 | 
| 1 | LI L L, ZHAO X, TSENG M L, et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm [J]. Journal of Cleaner Production, 2020, 242: No.118447. | 
| 2 | 刘坤.基于随机森林的风力发电系统输出功率预测方法[J].光源与照明, 2022(7): 165-167. | 
| LIU K. Wind power output prediction method based on random forest [J]. Lamps and Lighting, 2022(7): 165-167. | |
| 3 | ZHENG H, WU Y. A XGBoost model with weather similarity analysis and feature engineering for short-term wind power forecasting [J]. Applied Sciences, 2019, 9(15): 3019. | 
| 4 | RODRIGUEZ H, MEDRANO M, ROSALES L M, et al. Multi-step forecasting strategies for wind speed time series [C]// Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing. Piscataway: IEEE, 2020, 4: 1-6. | 
| 5 | 曹俊波,周任军,邓学华,等.考虑优化ARIMA模型差分次数的风功率预测[J].电力系统及其自动化学报, 2019, 31(1): 105-111. | 
| CAO J B, ZHOU R J, DENG X H, et al. Wind power forecast considering differential times of optimal ARIMA model [J]. Proceedings of the CSU-EPSA, 2019, 31(1): 105-111. | |
| 6 | 易善军,王汉军,向勇,等.基于集成多尺度LSTM的短时风功率预测[J].重庆大学学报, 2021, 44(7): 75-81. | 
| YI S J, WANG H J, XIANG Y, et al. Short-term wind power forecasting based on integrated multi-scale LSTM [J]. Journal of Chongqing University, 2021, 44(7): 75-81. | |
| 7 | 周思思,李勇,郭钇秀,等.考虑时序特征提取与双重注意力融合的TCN超短期负荷预测[J].电力系统自动化, 2023, 47(18): 193-205. | 
| ZHOU S S, LI Y, GUO Y X, et al. Ultra-short-term load forecasting based on temporal convolutional network considering temporal feature extraction and dual attention fusion [J]. Automation of Electric Power Systems, 2023, 47(18): 193-205. | |
| 8 | 骆钊,吴谕侯,朱家祥,等.基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J].电网技术, 2023, 47(9): 3527-3537. | 
| LUO Z, WU Y H, ZHU J X, et al. Wind power forecasting based on multi-scale time series block auto-encoder Transformer neural network model [J]. Power System Technology, 2023, 47(9): 3527-3537. | |
| 9 | 张浩.风电功率时空不确定性预测方法研究[D].北京:华北电力大学, 2021: 75-96. | 
| ZHANG H. Research on spatio-temporal uncertainty prediction method of wind power [D]. Beijing: North China Electric Power University, 2021: 75-96. | |
| 10 | 翟正利,梁振明,周炜,等.变分自编码器模型综述[J].计算机工程与应用, 2019, 55(3): 1-9. | 
| ZHAI Z L, LIANG Z M, ZHOU W, et al. Research overview of variational auto-encoders models [J]. Computer Engineering and Applications, 2019, 55(3): 1-9. | |
| 11 | 赵文斌.基于PU学习和VAE的异常检测研究[D].兰州:兰州大学, 2022: 34-44. | 
| ZHAO W B. Research on anomaly detection based on PU learning and VAE [D]. Lanzhou: Lanzhou University, 2022: 34-44. | |
| 12 | 姜兆宇,贾庆山,管晓宏.多时空尺度的风力发电预测方法综述[J].自动化学报, 2019, 45(1): 51-71. | 
| JIANG Z Y, JIA Q S, GUAN X H. A review of multi-temporal-and-spatial-scale wind power forecasting method [J]. Acta Automatica Sinica, 2019, 45(1): 51-71. | |
| 13 | 杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用, 2018, 38(S2): 1-6. | 
| YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network [J]. Journal of Computer Applications, 2018, 38(S2): 1-6. | |
| 14 | 李悦.基于深度神经网络的时间序列预测模型研究[D].大连:辽宁师范大学, 2023: 24-25. | 
| LI Y. Research on time series prediction model based on deep neural network [D]. Dalian: Liaoning Normal University, 2023: 24-25. | |
| 15 | LIN G, YAN H, KOU G, et al. Understanding adaptive gradient clipping in DP-SGD, empirically [J]. International Journal of Intelligent Systems, 2022, 37(11): 9674-9700. | 
| 16 | ZHOU J, LU X, XIAO Y, et al. SDWPF: a dataset for spatial dynamic wind power forecasting challenge at KDD Cup 2022 [EB/OL]. [2024-01-24]. . | 
| 17 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
| 18 | GONG M, LI W, YAN C, et al. Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation [J]. Journal of Renewable and Sustainable Energy, 2023, 15(5): No.053306. | 
| 19 | WANG Z, CHEN Z, YANG Y, et al. A hybrid Autoformer framework for electricity demand forecasting [J]. Energy Reports, 2023, 9: 3800-3812. | 
| 20 | PARK S, JUNG S, JUNG S, et al. Sliding window-based LightGBM model for electric load forecasting using anomaly repair [J]. The Journal of Supercomputing, 2021, 77: 12857-12878. | 
| 21 | WANG Y, CHEN T, ZHOU S, et al. An improved Wavenet network for multi-step-ahead wind energy forecasting [J]. Energy Conversion and Management, 2023, 278: No.116709. | 
| [1] | Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay [J]. Journal of Computer Applications, 2025, 45(1): 337-344. | 
| [2] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. | 
| [3] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. | 
| [4] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [5] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. | 
| [6] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [7] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. | 
| [8] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. | 
| [9] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. | 
| [10] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. | 
| [11] | Hongtao SONG, Jiangsheng YU, Qilong HAN. Industrial multivariate time series data quality assessment method [J]. Journal of Computer Applications, 2024, 44(6): 1743-1750. | 
| [12] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. | 
| [13] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. | 
| [14] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. | 
| [15] | Shuai REN, Yuanfa JI, Xiyan SUN, Zhaochuan WEI, Zian LIN. Prediction of landslide displacement based on improved grey wolf optimizer and support vector regression [J]. Journal of Computer Applications, 2024, 44(3): 972-982. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
