Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 305-313.DOI: 10.11772/j.issn.1001-9081.2025010070
• Frontier and comprehensive applications • Previous Articles Next Articles
Yanan LI1, Mengyang GUO1, Guojun DENG2, Yunfeng CHEN2, Jianji REN1, Yongliang YUAN3(
)
Received:2025-02-07
Revised:2025-03-29
Accepted:2025-04-02
Online:2026-01-10
Published:2026-01-10
Contact:
Yongliang YUAN
About author:LI Yanan, born in 1983, Ph. D., associate professor. His research interests include big data analysis, privacy computing.Supported by:
李亚男1, 郭梦阳1, 邓国军2, 陈允峰2, 任建吉1, 原永亮3(
)
通讯作者:
原永亮
作者简介:李亚男(1983—),男,河南温县人,副教授,博士, CCF会员,主要研究方向:大数据分析、隐私计算基金资助:CLC Number:
Yanan LI, Mengyang GUO, Guojun DENG, Yunfeng CHEN, Jianji REN, Yongliang YUAN. Method for life prediction of parallel branching engine based on multi-modal fusion features[J]. Journal of Computer Applications, 2026, 46(1): 305-313.
李亚男, 郭梦阳, 邓国军, 陈允峰, 任建吉, 原永亮. 基于多模态融合特征的并分支发动机寿命预测方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 305-313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010070
| 数据集 | 发动机数 | 操作状态分类序号 | 故障类别分类序号 | |
|---|---|---|---|---|
| 训练集 | 测试集 | |||
| FD001 | 100 | 100 | 1 | 1 |
| FD002 | 260 | 259 | 6 | 1 |
| FD003 | 100 | 100 | 1 | 2 |
| FD004 | 249 | 248 | 6 | 2 |
Tab. 1 C-MAPSS dataset
| 数据集 | 发动机数 | 操作状态分类序号 | 故障类别分类序号 | |
|---|---|---|---|---|
| 训练集 | 测试集 | |||
| FD001 | 100 | 100 | 1 | 1 |
| FD002 | 260 | 259 | 6 | 1 |
| FD003 | 100 | 100 | 1 | 2 |
| FD004 | 249 | 248 | 6 | 2 |
| 数据集 | 方法 | R2 | RMSE | Score |
|---|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 0.998 7 | 0.106 5 | 0.996 5 |
| CNN | 0.987 6 | 6.346 6 | 0.995 9 | |
| BiLSTM | 0.974 2 | 9.180 5 | 0.995 7 | |
| FD002 | MPCNN-BiLSTM | 0.997 6 | 0.888 6 | 0.994 3 |
| CNN | 0.979 7 | 8.841 7 | 0.992 2 | |
| BiLSTM | 0.966 1 | 11.437 2 | 0.991 1 |
Tab. 2 Ablation experiment results of MPCNN-BiLSTM on datasets FD001 and FD002
| 数据集 | 方法 | R2 | RMSE | Score |
|---|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 0.998 7 | 0.106 5 | 0.996 5 |
| CNN | 0.987 6 | 6.346 6 | 0.995 9 | |
| BiLSTM | 0.974 2 | 9.180 5 | 0.995 7 | |
| FD002 | MPCNN-BiLSTM | 0.997 6 | 0.888 6 | 0.994 3 |
| CNN | 0.979 7 | 8.841 7 | 0.992 2 | |
| BiLSTM | 0.966 1 | 11.437 2 | 0.991 1 |
| 数据集 | 方法 | R2 | RMSE | Score |
|---|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 0.998 7 | 0.106 5 | 0.996 5 |
| CMGRU | 0.987 2 | 6.445 5 | 0.996 1 | |
| MSTPP | 0.989 8 | 5.757 8 | 0.996 3 | |
| sLSTM | 0.984 8 | 7.040 2 | 0.996 0 | |
| GRU | 0.976 6 | 8.737 4 | 0.995 9 | |
| XGBoost | 0.961 8 | 11.172 7 | 0.990 8 | |
| FD002 | MPCNN-BiLSTM | 0.997 6 | 0.888 6 | 0.994 3 |
| CMGRU | 0.964 2 | 11.742 6 | 0.991 3 | |
| MSTPP | 0.983 6 | 7.928 5 | 0.990 8 | |
| sLSTM | 0.981 8 | 8.357 7 | 0.990 7 | |
| GRU | 0.957 3 | 12.835 1 | 0.990 5 | |
| XGBoost | 0.953 1 | 13.445 8 | 0.989 3 |
Tab. 3 Comparison results of prediction performance of different methods on datasets FD001 and FD002
| 数据集 | 方法 | R2 | RMSE | Score |
|---|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 0.998 7 | 0.106 5 | 0.996 5 |
| CMGRU | 0.987 2 | 6.445 5 | 0.996 1 | |
| MSTPP | 0.989 8 | 5.757 8 | 0.996 3 | |
| sLSTM | 0.984 8 | 7.040 2 | 0.996 0 | |
| GRU | 0.976 6 | 8.737 4 | 0.995 9 | |
| XGBoost | 0.961 8 | 11.172 7 | 0.990 8 | |
| FD002 | MPCNN-BiLSTM | 0.997 6 | 0.888 6 | 0.994 3 |
| CMGRU | 0.964 2 | 11.742 6 | 0.991 3 | |
| MSTPP | 0.983 6 | 7.928 5 | 0.990 8 | |
| sLSTM | 0.981 8 | 8.357 7 | 0.990 7 | |
| GRU | 0.957 3 | 12.835 1 | 0.990 5 | |
| XGBoost | 0.953 1 | 13.445 8 | 0.989 3 |
| 数据集 | 方法 | 训练时间/s | 测试时间/s |
|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 47.532 2 | 0.232 5 |
| CMGRU | 49.173 2 | 0.284 2 | |
| MSTPP | 63.257 1 | 0.372 5 | |
| sLSTM | 45.125 7 | 0.193 5 | |
| GRU | 43.132 4 | 0.175 1 | |
| XGBoost | 15.398 2 | 0.112 4 | |
| FD002 | MPCNN-BiLSTM | 105.147 6 | 0.523 3 |
| CMGRU | 118.231 1 | 0.634 2 | |
| MSTPP | 126.165 3 | 0.775 9 | |
| sLSTM | 92.776 1 | 0.452 8 | |
| GRU | 88.335 4 | 0.425 5 | |
| XGBoost | 19.882 6 | 0.173 5 |
Tab. 4 Comparison of training time and test time for different methods on different datasets
| 数据集 | 方法 | 训练时间/s | 测试时间/s |
|---|---|---|---|
| FD001 | MPCNN-BiLSTM | 47.532 2 | 0.232 5 |
| CMGRU | 49.173 2 | 0.284 2 | |
| MSTPP | 63.257 1 | 0.372 5 | |
| sLSTM | 45.125 7 | 0.193 5 | |
| GRU | 43.132 4 | 0.175 1 | |
| XGBoost | 15.398 2 | 0.112 4 | |
| FD002 | MPCNN-BiLSTM | 105.147 6 | 0.523 3 |
| CMGRU | 118.231 1 | 0.634 2 | |
| MSTPP | 126.165 3 | 0.775 9 | |
| sLSTM | 92.776 1 | 0.452 8 | |
| GRU | 88.335 4 | 0.425 5 | |
| XGBoost | 19.882 6 | 0.173 5 |
| 方法 | R2 | RMSE | Score |
|---|---|---|---|
| MPCNN-BiLSTM | 0.977 5 | 6.720 4 | 0.993 5 |
| CMGRU | 0.967 4 | 15.307 4 | 0.987 9 |
| MSTPP | 0.975 2 | 13.374 1 | 0.991 4 |
| sLSTM | 0.963 4 | 16.221 6 | 0.985 2 |
| GRU | 0.942 6 | 20.327 5 | 0.970 5 |
| XGBoost | 0.966 3 | 15.563 1 | 0.987 2 |
Tab. 5 Comparison results of different methods on tool dataset
| 方法 | R2 | RMSE | Score |
|---|---|---|---|
| MPCNN-BiLSTM | 0.977 5 | 6.720 4 | 0.993 5 |
| CMGRU | 0.967 4 | 15.307 4 | 0.987 9 |
| MSTPP | 0.975 2 | 13.374 1 | 0.991 4 |
| sLSTM | 0.963 4 | 16.221 6 | 0.985 2 |
| GRU | 0.942 6 | 20.327 5 | 0.970 5 |
| XGBoost | 0.966 3 | 15.563 1 | 0.987 2 |
| [1] | 牟含笑,郑建飞,胡昌华,等.基于CDBN与BiLSTM的多元退化设备剩余寿命预测[J].航空学报, 2022, 43(7): 308-319. |
| MOU H X, ZHENG J F, HU C H, et al. Remaining useful life prediction of multivariate degradation equipment based on CDBN and BiLSTM [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 308-319. | |
| [2] | YUAN Y, YANG Q, WANG G, et al. Combined improved tuna swarm optimization with graph convolutional neural network for remaining useful life of engine [J]. Quality and Reliability Engineering International, 2025, 41(1): 174-191. |
| [3] | HU J, QIAN X, CHENG H, et al. Remaining useful life prediction for aircraft engines based on phase space reconstruction and hybrid VNS-SVR model [J]. Journal of Intelligent and Fuzzy Systems: Applications in Engineering and Technology, 2021, 41(2): 3415-3428. |
| [4] | CAI L, YIN H, LIN J, et al. An update-strategy-based Gaussian process regression method for aeroengines fault prediction [J]. IEEE Transactions on Industrial Informatics, 2023, 20(2): 1941-1951. |
| [5] | WU Z, WANG Z, WEI H, et al. Remaining useful life prediction for equipment based on RF-BiLSTM [J]. AIP Advances, 2022, 12(11): No.115209. |
| [6] | MOHRIL R S, SOLANKI B S, KULKARNI M S, et al. XGBoost based residual life prediction in the presence of human error in maintenance [J]. Neural Computing and Applications, 2023, 35(4): 3025-3039. |
| [7] | YANG X, ZHENG Y, ZHANG Y, et al. Bearing remaining useful life prediction based on regression shapelet and graph neural network [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.3505712. |
| [8] | 李路云,王海瑞,朱贵富.改进1D-CNN和LSTM的涡扇发动机剩余寿命预测[J].热能动力工程, 2023, 38(7): 194-202. |
| LI L Y, WANG H R, ZHU G F. Remaining Useful Life Prediction of Turbofan Engine based on Improved 1D-CNN and LSTM [J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(7): 194-202. | |
| [9] | 秦子轩,张晓东,白广芝,等.基于多尺度特征融合的航空发动机剩余寿命预测[J].航空发动机, 2024, 50(4): 114-120. |
| QIN Z X, ZHANG X D, BAI G Z, et al. Aeroengine remaining useful life prediction based on multi-scale feature fusion [J]. Aeroengine, 2024, 50(4): 114-120. | |
| [10] | 陈俊英,席月芸,李朝阳.多尺度局部特征和Transformer全局学习融合的发动机剩余寿命预测[J].自动化学报, 2024, 50(9): 1818-1830. |
| CHEN J Y, XI Y Y, LI Z Y. Prediction of aeroengine remaining life by combining multi-scale local features and Transformer global learning [J]. Acta Automatica Sinica, 2024, 50(9): 1818-1830. | |
| [11] | 占可,王寅杰,董路南,等.基于改进格拉姆角场和注意力机制的滚动轴承故障诊断[J].轴承, 2024(8): 80-85. |
| ZHAN K, WANG Y J, DONG L N, et al. Fault diagnosis for rolling bearings based on improved Gramian angular field and attention mechanism [J]. Bearing, 2024(8): 80-85. | |
| [12] | 张国栋,尹强,羊柳.基于格拉姆角场和PSO-CNN的滚动轴承故障诊断方法[J].兵器装备工程学报, 2024, 45(4): 301-308. |
| ZHANG G D, YIN Q, YANG L. Rolling bearing fault diagnosis method based on Gram angle field and PSO-CNN [J]. Journal of Ordnance Equipment Engineering, 2024, 45(4): 301-308. | |
| [13] | 刘志坚,何蔚,刘航,等.基于格拉姆角场变换和深度压缩模型的变压器故障识别方法[J].电网技术, 2023, 47(4): 1478-1490. |
| LIU Z J, HE W, LIU H, et al. Fault identification method for power transformer Based on Gramian angular field transformation and deep compression model [J]. Power System Technology, 2023, 47(4): 1478-1490. | |
| [14] | REN J, WANG Z, PANG Y, et al. Genetic algorithm-assisted an improved AdaBoost double-layer for oil temperature prediction of TBM [J]. Advanced Engineering Informatics, 2022, 52: No.101563. |
| [15] | MA Y, WANG Z, GAO J, et al. A novel method for remaining useful life of solid-state lithium-ion battery based on improved CNN and health indicators derivation [J]. Mechanical Systems and Signal Processing, 2024, 220: No.111646. |
| [16] | DE PATER I, MITICI M. Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder [J]. Engineering Applications of Artificial Intelligence, 2023, 117(Pt A): No.105582. |
| [17] | ZHU Q, ZHOU Z, LI Y, et al. Contrastive BiLSTM-enabled health representation learning for remaining useful life prediction [J]. Reliability Engineering and System Safety, 2024, 249: No.110210. |
| [18] | 张研,景超,王慧民,等.基于周期注意力机制的中长期光伏发电功率预测[J].太阳能学报, 2024, 45(10): 298-308. |
| ZHANG Y, JING C, WANG H M, et al. Medium and long term photovoltaic power prediction based on periodic attention mechanism [J]. Acta Energiae Solaris Sinica, 2024, 45(10): 298-308. | |
| [19] | XU T, HAN G, ZHU H, et al. Multi-resolution LSTM-based prediction model for remaining useful life of aero-engine [J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1931-1941. |
| [20] | ZHOU J, QIN Y, CHEN D, et al. Remaining useful life prediction of bearings by a new reinforced memory GRU network [J]. Advanced Engineering Informatics, 2022, 53: No.101682. |
| [21] | 彭文闯,郭晟楠,万怀宇,等.面向交通事故预测的时空多模态点过程[J].计算机应用研究, 2023, 40(8): 2340-2345. |
| PENG W C, GUO S N, WAN H Y, et al. Multimodal spatial-temporal point processes for traffic accident event prediction [J]. Application Research of Computers, 2023, 40(8): 2340-2345. | |
| [22] | WANG Z, MA Y, GAO J, et al. Cured memory RUL prediction of solid-state batteries combined progressive-topologia fusion health indicators [J]. IEEE Transactions on Industrial Informatics, 2025, 21(5): 4051-4060. |
| [23] | YUAN Y, YANG Q, REN J, et al. Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification [J]. Renewable Energy, 2024, 225: No.120211. |
| [24] | JIANG J, ZHANG X, YUAN Z. Feature selection for classification with Spearman’s rank correlation coefficient-based self-information in divergence-based fuzzy rough sets [J]. Expert Systems with Applications, 2024, 249(Pt B): No.123633. |
| [25] | FERREIRA C, GONÇALVES G. Remaining useful life prediction and challenges: a literature review on the use of machine learning methods [J]. Journal of Manufacturing Systems, 2022, 63: 550-562. |
| [26] | LI X, LIU X, YUE C, et al. Systematic review on tool breakage monitoring techniques in machining operations [J]. International Journal of Machine Tools and Manufacture, 2022, 176: No.103882. |
| [1] | Fei WANG, Ye TAO, Jiawang LIU, Wei LI, Xiugong QIN, Ning ZHANG. Bimodal fusion method for constructing spatio-temporal knowledge graph in smart home space [J]. Journal of Computer Applications, 2026, 46(1): 52-59. |
| [2] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
| [3] | Chao SHI, Yuxin ZHOU, Qian FU, Wanyu TANG, Ling HE, Yuanyuan LI. Action recognition algorithm for ADHD patients using skeleton and 3D heatmap [J]. Journal of Computer Applications, 2025, 45(9): 3036-3044. |
| [4] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
| [5] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [6] | Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation [J]. Journal of Computer Applications, 2025, 45(7): 2378-2386. |
| [7] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
| [8] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
| [9] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
| [10] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
| [11] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
| [12] | Yonghong FAN, Heming HUANG. CnnPRL: progressive representation learning method for speech emotion recognition [J]. Journal of Computer Applications, 2025, 45(12): 3804-3812. |
| [13] | Jianhua REN, Jiahui CAO, Di JIA. Hand pose estimation based on mask prompts and attention [J]. Journal of Computer Applications, 2025, 45(12): 4012-4020. |
| [14] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
| [15] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||