Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 526-533.DOI: 10.11772/j.issn.1001-9081.2024030283
• Cyber security • Previous Articles
Dixin WANG1, Jiahao WANG2, Min LI1(), Hao CHEN3, Guangyao HU2, Yu GONG1
Received:
2024-03-18
Revised:
2024-05-17
Accepted:
2024-05-27
Online:
2024-07-12
Published:
2025-02-10
Contact:
Min LI
About author:
WANG Dixin, born in 1999, M. S. candidate. His research interests include network and information security.Supported by:
王地欣1, 王佳昊2, 李敏1(), 陈浩3, 胡光耀2, 龚宇1
通讯作者:
李敏
作者简介:
王地欣(1999—),男,四川成都人,硕士研究生,CCF会员,主要研究方向:网络与信息安全基金资助:
CLC Number:
Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network[J]. Journal of Computer Applications, 2025, 45(2): 526-533.
王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇. 面向水声通信网络的异常攻击检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 526-533.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030283
特征编号 | 特征名称 | 特征描述 |
---|---|---|
1 | Sink节点ID | 发送信息的节点ID |
2 3 | 数据源ID 中继节点ID | 采集数据的节点ID 参与转发的节点ID |
4 | 信噪比 | 水声信道的信噪比 |
5 | 包序号 | 当前的包序号 |
6 | 包总数 | 当前数据流总包数 |
7 | 发送时间 | 消息的发送时间 |
8 | 接受时间 | 消息的接收时间 |
9 | 水下坐标 | 节点坐标 |
10 | 电池电压 | 节点的电池电压 |
11 | 温度 | 节点所在水域温度 |
12 | 电导 | 节点所在水域电导 |
13 | 压力 | 节点所在水域压力 |
14 | 业务类型 | 当前发送信息类型 |
Tab. 1 Data format features
特征编号 | 特征名称 | 特征描述 |
---|---|---|
1 | Sink节点ID | 发送信息的节点ID |
2 3 | 数据源ID 中继节点ID | 采集数据的节点ID 参与转发的节点ID |
4 | 信噪比 | 水声信道的信噪比 |
5 | 包序号 | 当前的包序号 |
6 | 包总数 | 当前数据流总包数 |
7 | 发送时间 | 消息的发送时间 |
8 | 接受时间 | 消息的接收时间 |
9 | 水下坐标 | 节点坐标 |
10 | 电池电压 | 节点的电池电压 |
11 | 温度 | 节点所在水域温度 |
12 | 电导 | 节点所在水域电导 |
13 | 压力 | 节点所在水域压力 |
14 | 业务类型 | 当前发送信息类型 |
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
SVM | 81.76 | 81.34 | 81.51 |
CNN | 82.17 | 82.33 | 82.56 |
LSTM | 83.75 | 83.18 | 82.42 |
BiLSTM | 85.61 | 85.32 | 85.44 |
CNN-BiLSTM | 87.52 | 87.48 | 87.64 |
本文模型 | 89.76 | 89.81 | 89.43 |
Tab. 2 Comparison results of different models
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
SVM | 81.76 | 81.34 | 81.51 |
CNN | 82.17 | 82.33 | 82.56 |
LSTM | 83.75 | 83.18 | 82.42 |
BiLSTM | 85.61 | 85.32 | 85.44 |
CNN-BiLSTM | 87.52 | 87.48 | 87.64 |
本文模型 | 89.76 | 89.81 | 89.43 |
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
w/o CNN | 85.44 | 85.44 | 85.44 |
w/o BiLSTM | 86.75 | 86.58 | 86.58 |
w/o Attention | 87.88 | 87.64 | 87.63 |
本文模型 | 89.76 | 89.81 | 89.43 |
Tab. 3 Ablation study results
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
w/o CNN | 85.44 | 85.44 | 85.44 |
w/o BiLSTM | 86.75 | 86.58 | 86.58 |
w/o Attention | 87.88 | 87.64 | 87.63 |
本文模型 | 89.76 | 89.81 | 89.43 |
检测类型 | Snort检测引擎 | WCBA+Snort系统 |
---|---|---|
攻击记录总数 | 25 143 | 24 875 |
正常记录总数 | 10 699 | 13 690 |
正确攻击记录数 | 12 672 | 21 866 |
正确正常记录数 | 9 877 | 10 387 |
误报攻击记录数 | 8 256 | 465 |
误报正常记录数 | 947 | 185 |
Tab. 4 Experimental comparison results of two detection methods
检测类型 | Snort检测引擎 | WCBA+Snort系统 |
---|---|---|
攻击记录总数 | 25 143 | 24 875 |
正常记录总数 | 10 699 | 13 690 |
正确攻击记录数 | 12 672 | 21 866 |
正确正常记录数 | 9 877 | 10 387 |
误报攻击记录数 | 8 256 | 465 |
误报正常记录数 | 947 | 185 |
1 | 丛键,张海燕. 水下网络安全关键技术研究[J]. 通信技术, 2018, 51(6):1379-1383. |
CONG J, ZHANG H Y. Key technologies for undersea network security[J]. Communications Technology, 2018, 51(6):1379-1383. | |
2 | WANG Q, DAI H N, LI X, et al. Eavesdropping attacks in underwater acoustic networks[C]// Proceedings of the 10th International Conference on Information, Communications and Signal Processing. Piscataway: IEEE, 2015: 1-5. |
3 | WANG H, HAN G, HOU Y, et al. A multi-channel interference based source location privacy protection scheme in underwater acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2058-2069. |
4 | DESHMUKH A, DEO S, CHANDAVARKAR B R. Mitigating neighborship attack in underwater sensor networks[C]// Proceedings of the 12th International Conference on Computing Communication and Networking Technologies. Piscataway: IEEE, 2021: 1-6. |
5 | BHARAMAGOUDRA M R, MANVI S S. Agent-based secure routing for underwater acoustic sensor networks[J]. International Journal of Communication Systems, 2017, 30(13): No.e3281. |
6 | HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395. |
7 | ZHAO S, CHANDRASHEKAR M, LEE Y, et al. Real-time network anomaly detection system using machine learning[C]// Proceedings of the 11th International Conference on the Design of Reliable Communication Networks. Piscataway: IEEE, 2015: 267-270. |
8 | 谢玉惠,肖桂荣. 融合注意力机制的多通道CNNs-BiLSTM情感极性分析方法[J]. 小型微型计算机系统, 2023, 44(6):1140-1145. |
XIE Y H, XIAO G R. Multi-channel CNNs-BiLSTM emotional polarity analysis method fused with attention mechanism[J]. Journal of Chinese Computer Systems, 2023, 44(6):1140-1145. | |
9 | DONG R H, SHUI Y L, ZHANG Q Y. Intrusion detection model based on feature selection and random forest[J]. International Journal of Network Security, 2021, 23(6): 985-996. |
10 | MOUSTAFA N, HU J, SLAY J. A holistic review of network anomaly detection systems: a comprehensive survey[J]. Journal of Network and Computer Applications, 2019, 128: 33-55. |
11 | ABDALLAH A, MAAROF M A, ZAINAL A. Fraud detection system: a survey[J]. Journal of Network and Computer Applications, 2016, 68: 90-113. |
12 | FERNANDO T, GAMMULLE H, DENMAN S, et al. Deep learning for medical anomaly detection: a survey[J]. ACM Computing Surveys, 2022, 54(7): No.141. |
13 | CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: a survey[EB/OL]. [2023-12-23].. |
14 | LAI C, PETROCCIA R, PELEKANAKIS K, et al. Toward the development of secure underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 1075-1087. |
15 | JIANG S. On securing underwater acoustic networks: a survey[J]. IEEE Communications Surveys and Tutorials, 2019, 21(1): 729-752. |
16 | HE Y, HAN G, JIANG J, et al. A trust update mechanism based on reinforcement learning in underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(3): 811-821. |
17 | DAS A P, THAMPI S M. Unsupervised anomaly detection in underwater acoustic sensor networks[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36(3): 2367-2372. |
18 | DU J, HAN G, LIN C, et al. ITrust: an anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1684-1696. |
19 | NASRIN F, YASMIN A, ISHTIAQUE AHMED N. Anomaly detection method for sensor network in under water environment[C]// Proceedings of the 2021 International Conference on Information and Communication Technology for Sustainable Development. Piscataway: IEEE, 2021: 380-384. |
20 | DOMINGOS L C F, SANTOS P E, SKELTON P S M, et al. A survey of underwater acoustic data classification methods using deep learning for shoreline surveillance[J]. Sensors, 2022, 22(6): No.2181. |
21 | ODHIAMBO OMUYA E, OKEYO G O, KIMWELE M W. Feature selection for classification using principal component analysis and information gain[J]. Expert Systems with Applications, 2021, 174: No.114765. |
22 | LABRÍN C, URDINEZ F. Principal component analysis[M]// URDINEZ F, CRUZ A. R for political data science: a practical guide. New York: Chapman and Hall/CRC, 2020: 375-393. |
23 | NASEER S, SALEEM Y, KHALID S, et al. Enhanced network anomaly detection based on deep neural networks[J]. IEEE Access, 2018, 6: 48231-48246. |
24 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2016: 207-212. |
25 | PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.92. |
26 | PRAMUDYA P B, ALAMSYAH A. Implementation of signature-based intrusion detection system using SNORT to prevent threats in network servers[J]. Journal of Soft Computing Exploration, 2022, 3(2): 93-98. |
27 | GUO J, LIU J, SONG S, et al. Aqua-Psim: a semi-physical simulation platform based on NS3 for underwater acoustic network[C]// Proceedings of the 15th ACM International Conference on Underwater Networks and Systems. New York: ACM, 2021: No.39. |
28 | POZI M S M, SULAIMAN M N, MUSTAPHA N, et al. Improving anomalous rare attack detection rate for intrusion detection system using support vector machine and genetic programming[J]. Neural Processing Letters, 2016, 44(2): 279-290. |
29 | 梁杰,陈嘉豪,张雪芹,等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7): 523-529. |
LIANG J, CHEN J H, ZHANG X Q, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7): 523-529. | |
30 | YANG J, ZHOU M, CUI B. MLAB-BiLSTM: online web attack detection via attention-based deep neural networks[C]// Proceedings of the 2020 International Conference on Security and Privacy in Digital Economy, CCIS 1268. Singapore: Springer, 2020: 482-492. |
31 | OMAROV B, AUELBEKOV O, SULIMAN A, et al. CNN-BiLSTM hybrid model for network anomaly detection in internet of things[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(3): 436-444. |
[1] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[2] | Zhiqiang REN, Xuebin CHEN. FedAud: adaptive defense mechanism based on historical model updates [J]. Journal of Computer Applications, 2025, 45(2): 490-496. |
[3] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[4] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[5] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
[6] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[7] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[8] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
[9] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[10] | Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging [J]. Journal of Computer Applications, 2025, 45(1): 204-213. |
[11] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[12] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[13] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[14] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[15] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||