Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 526-533.DOI: 10.11772/j.issn.1001-9081.2024030283

• Cyber security • Previous Articles    

Abnormal attack detection for underwater acoustic communication network

Dixin WANG1, Jiahao WANG2, Min LI1(), Hao CHEN3, Guangyao HU2, Yu GONG1   

  1. 1.School of Computer Science,Sichuan Normal University,Chengdu Sichuan 610101,China
    2.School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 610054,China
    3.College of Intelligent Manufacturing and Information Technology,Ya’an Polytechnic College,Ya’an Sichuan 625100,China
  • Received:2024-03-18 Revised:2024-05-17 Accepted:2024-05-27 Online:2024-07-12 Published:2025-02-10
  • Contact: Min LI
  • About author:WANG Dixin, born in 1999, M. S. candidate. His research interests include network and information security.
    WANG Jiahao, born in 1978, Ph. D., associate professor. His research interests include internet of things, data analysis, information security.
    CHEN Hao, born in 1976, M. S., senior engineer. His research interests include computer network engineering, big data.
    HU Guangyao, born in 2001, M. S. candidate. His research interests include internet of things.
    GONG Yu, born in 2000, M. S. candidate. His research interests include network and information security.
  • Supported by:
    Sichuan Science and Technology Support Project(2022YFG0212);Neijiang Special Project for Science and Technology Incubation and Achievement Transformation(2021KJFH004);University of Electronic Science and Technology of China-ZhiXiaojin Smart Home Joint Research Center Project(H04W210180)

面向水声通信网络的异常攻击检测

王地欣1, 王佳昊2, 李敏1(), 陈浩3, 胡光耀2, 龚宇1   

  1. 1.四川师范大学 计算机科学学院,成都 610101
    2.电子科技大学 信息与软件工程学院,成都 610054
    3.雅安职业技术学院 智能制造与信息技术学院,四川 雅安 625100
  • 通讯作者: 李敏
  • 作者简介:王地欣(1999—),男,四川成都人,硕士研究生,CCF会员,主要研究方向:网络与信息安全
    王佳昊(1978—),男,河北隆尧人,副教授,博士, CCF会员,主要研究方向:物联网、数据分析、信息安全
    陈浩(1976—),男,四川雅安人,高级工程师,硕士,主要研究方向:计算机网络工程、大数据
    胡光耀(2001—),男,四川成都人,硕士研究生,主要研究方向:物联网
    龚宇(2000—),男,湖北宜昌人,硕士研究生,主要研究方向:网络与信息安全。
  • 基金资助:
    四川省科技支撑计划项目(2022YFG0212);内江市科技孵化和成果转化专项(2021KJFH004);电子科技大学-智小金智能家居联合研究中心项目(H04W210180)

Abstract:

In recent years, underwater acoustic communication network plays a crucial role in underwater information transmission. Due to the open nature of underwater communication channels, they are more prone to attacks such as interference, tempering, and eavesdropping, so that underwater acoustic communication networks face security challenges different from traditional networks. However, traditional anomaly detection methods have lower accuracy when applied to underwater acoustic networks directly. At the same time, although machine learning-based anomaly detection methods improve accuracy, they face problems such as limited datasets and poor model interpretability. Therefore, CNN-BiLSTM integrating attention mechanism was applied for anomaly attack detection in underwater acoustic networks, and WCBA (underWater CNN-BiLSTM-Attention) model was proposed. In the model, the high dimension of dataset was reduced effectively through IG-PCA (Integrated Gradient-Principal Component Analysis) feature selection algorithm, and the identification of abnormal attacks in complex underwater data was enabled by fully utilizing the spatio-temporal features of multi-dimensional matrix acoustic network traffic. Experimental results show that WCBA model provides higher accuracy and interpretability compared to other neural network models when the dataset is limited.

Key words: underwater acoustic communication network, anomaly detection, network security, feature selection, Convolutional Neural Network (CNN), attention mechanism

摘要:

近些年,水声通信网络在水下信息传输方面发挥了至关重要的作用。水下通信信道具有开放性,更易遭受干扰、欺骗和窃听等攻击,因此水声通信网络面临与传统网络不同的安全挑战。然而,传统的异常检测方法直接用于水声网络时的准确率较低,而基于机器学习的异常检测方法虽然提高了准确率,但面临数据集受限、模型可解释性较差等问题。因此,将融合注意力机制的CNN-BiLSTM用于水声网络下的异常攻击检测,并提出WCBA(underWater CNN-BiLSTM-Attention)模型。该模型通过IG-PCA(Integrated Gradient-Principal Component Analysis)特征选择算法有效降低数据集的高维度,并能充分利用多维矩阵水声通信网络流量的时空特征在复杂水声数据中识别异常攻击。实验结果表明,WCBA模型在数据集受限的情况下,相较于其他神经网络模型提供了更高的准确率,并具有较高可解释性。

关键词: 水声通信网络, 异常检测, 网络安全, 特征选择, 卷积神经网络, 注意力机制

CLC Number: