Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2941-2948.DOI: 10.11772/j.issn.1001-9081.2025040411

• Multimedia computing and computer simulation • Previous Articles    

Dynamic dictionary learning based spatio-spectral fusion for noisy hyper-spectral images

Jing YANG1,2, Jianbin ZHAO1, Lu CHEN3(), Haotian CHI1, Tao YAN3, Bin CHEN4,5   

  1. 1.School of Automation and Software Engineering,Shanxi University,Taiyuan Shanxi 030031,China
    2.Technology Department,Taiyuan Satellite Launch Center,Taiyuan Shanxi 030027,China
    3.Institute of Big Data Science and Industry,Shanxi University,Taiyuan Shanxi 030006,China
    4.Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401151,China
    5.International Institute for Artificial Intelligence,Harbin Institute of Technology (Shenzhen),Shenzhen Guangdong 518055,China
  • Received:2025-04-17 Revised:2025-06-05 Accepted:2025-06-10 Online:2025-06-13 Published:2025-09-10
  • Contact: Lu CHEN
  • About author:YANG Jing, born in 1990, Ph. D., lecturer. Her research interests include hyper-spectral image processing, spatio-spectral fusion.
    ZHAO Jianbin, born in 2001, M. S. candidate. His research interests include hyper-spectral image processing.
    CHI Haotian, born in 1990, Ph. D., lecturer. His research interests include information security.
    YAN Tao, born in 1987, Ph. D., associate professor. His research interests include 3D reconstruction.
    CHEN Bin, born in 1970, Ph. D., professor. His research interests include machine vision.
  • Supported by:
    National Natural Science Foundation of China(62406181);Scientific Research Project for Returned Overseas Students in Shanxi Province(2023-023);Fundamental Research Program of Shanxi Province(202203021222010)

基于动态字典学习的含噪高光谱图像空谱融合

杨静1,2, 赵建斌1, 陈路3(), 池浩田1, 闫涛3, 陈斌4,5   

  1. 1.山西大学 自动化与软件学院,太原 030031
    2.太原卫星发射中心 技术部,太原 030027
    3.山西大学 大数据科学与产业研究院,太原 030006
    4.哈尔滨工业大学 重庆研究院,重庆 401151
    5.哈尔滨工业大学(深圳) 国际人工智能研究院,广东 深圳 518055
  • 通讯作者: 陈路
  • 作者简介:杨静(1990—),女,河北故城人,讲师,博士,主要研究方向:高光谱图像处理、空谱融合
    赵建斌(2001—),男,山西平遥人,硕士研究生,主要研究方向:高光谱图像处理
    池浩田(1990—),男,山西长治人,讲师,博士,主要研究方向:信息安全
    闫涛(1987—),男,山西定襄人,副教授,博士,CCF会员,主要研究方向:三维重建
    陈斌(1970—),男,四川广汉人,教授,博士,主要研究方向:机器视觉。
  • 基金资助:
    国家自然科学基金资助项目(62406181);国家自然科学基金资助项目(62373233);山西省回国留学人员科研项目(2023-023);山西省基础研究计划项目(202203021222010);山西省基础研究计划项目(202203021222005)

Abstract:

Traditional Hyper-Spectral Image (HSI) spatio-spectral fusion algorithms usually use static spectral dictionary, in which the dictionary learning and the image fusion are two separate processes, thereby giving poor performance when processing noisy spatio-spectral fusion tasks. To address this problem, a noisy HSI spatio-spectral fusion algorithm based on Dynamic Dictionary Learning (DDL) was proposed, which adopted an iterative strategy that updates dictionary atoms dynamically during the fusion process, thereby collaborating to complete the spatio-spectral fusion and noise removal tasks. Firstly, a coarse denoising was performed on the input HSI and the denoising result was utilized to initialize the spectral dictionary. Secondly, the sparse representation technique was employed to fuse the two input images with the above initialized dictionary, resulting an intermediate fusion image. Thirdly, the intermediate fusion image was fed back to the dictionary learning module to update the dictionary atoms continuously, thereby forming a dynamic spectral dictionary. Finally, by iterating the above process, the final output image was obtained. Simulation results on three remote sensing HSI datasets show that the proposed algorithm can remove noise effectively while improving spatial resolution of the images. At the same time, experimental results on real noisy image bands indicate that the proposed algorithm can improve visual quality of the fused images effectively. On Cuprite Mine dataset, the Peak Signal-to-Noise Ratio (PSNR) of the proposed algorithm is increased by 32.48% and 10.72% respectively compared to those of Generalized Tensor Nuclear Norm (GTNN) method and AL-NSSR method — the method of denoising first and then fusion, with Gaussian noise variance of 0.15 and amplification factor of 8.

Key words: Hyper-Spectral Image (HSI), spatio-spectral fusion, noise, spectral dictionary learning, iterative sparse representation

摘要:

针对传统高光谱图像(HSI)空谱融合算法通常采用静态光谱字典,而字典学习与图像融合过程相分离,对含有噪声的空谱融合任务处理效果不佳的问题,提出一种基于动态字典学习(DDL)的含噪HSI空谱融合算法。该算法采用迭代思想,在融合过程中动态更新字典原子,从而协作完成空谱融合及噪声去除任务。首先,对输入的HSI进行粗去噪,并利用去噪结果初始化光谱字典;其次,利用上述初始化字典对两幅待融合图像进行稀疏表示,以得到中间融合结果;再次,将中间融合结果反馈给字典学习模块,不断更新字典原子,构造动态光谱字典;最后,通过迭代以上过程得到最终的输出图像。在3个遥感HSI数据集上的仿真实验结果表明,所提算法能够在提升图像空间分辨率的同时有效去除噪声。同时,在真实含噪图像波段上的实验结果表明,所提算法能够有效提高融合图像的视觉质量。在Cuprite Mine数据集上,在高斯噪声方差为0.15且放大倍数为8时,与基于广义张量核范数(GTNN)的方法和先去噪后融合的方法AL-NSSR方法相比,所提算法的峰值信噪比(PSNR)分别提升了32.48%和10.72%。

关键词: 高光谱图像, 空谱融合, 噪声, 光谱字典学习, 迭代稀疏表示

CLC Number: