Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2941-2948.DOI: 10.11772/j.issn.1001-9081.2025040411
• Multimedia computing and computer simulation • Previous Articles
Jing YANG1,2, Jianbin ZHAO1, Lu CHEN3(), Haotian CHI1, Tao YAN3, Bin CHEN4,5
Received:
2025-04-17
Revised:
2025-06-05
Accepted:
2025-06-10
Online:
2025-06-13
Published:
2025-09-10
Contact:
Lu CHEN
About author:
YANG Jing, born in 1990, Ph. D., lecturer. Her research interests include hyper-spectral image processing, spatio-spectral fusion.Supported by:
杨静1,2, 赵建斌1, 陈路3(), 池浩田1, 闫涛3, 陈斌4,5
通讯作者:
陈路
作者简介:
杨静(1990—),女,河北故城人,讲师,博士,主要研究方向:高光谱图像处理、空谱融合基金资助:
CLC Number:
Jing YANG, Jianbin ZHAO, Lu CHEN, Haotian CHI, Tao YAN, Bin CHEN. Dynamic dictionary learning based spatio-spectral fusion for noisy hyper-spectral images[J]. Journal of Computer Applications, 2025, 45(9): 2941-2948.
杨静, 赵建斌, 陈路, 池浩田, 闫涛, 陈斌. 基于动态字典学习的含噪高光谱图像空谱融合[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2941-2948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025040411
图像 | 算法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | ||
Pavia Center | HSSF | 7.70 | 30.40 | 9.24 | 2.49 | 9.05 | 28.99 | 10.59 | 2.88 | 11.03 | 27.28 | 12.65 | 3.45 |
GTNN | 9.27 | 28.78 | 12.06 | 3.01 | 10.88 | 27.40 | 13.82 | 3.49 | 13.25 | 25.68 | 16.24 | 4.19 | |
NSSR-AL | 4.29 | 35.49 | 4.92 | 1.46 | 4.73 | 34.63 | 5.32 | 1.59 | 5.66 | 33.07 | 6.22 | 1.88 | |
AL-NSSR | 3.78 | 36.59 | 4.88 | 1.36 | 4.23 | 35.60 | 5.43 | 1.53 | 5.35 | 33.56 | 6.69 | 1.90 | |
DDL | 3.64 | 36.90 | 4.66 | 1.32 | 3.71 | 36.74 | 4.65 | 1.32 | 4.27 | 35.51 | 5.29 | 1.51 | |
Pavia University | HSSF | 8.43 | 29.61 | 8.66 | 2.59 | 10.46 | 27.74 | 10.71 | 3.21 | 11.59 | 26.85 | 11.55 | 3.48 |
GTNN | 11.41 | 26.98 | 12.49 | 3.36 | 12.58 | 26.14 | 13.69 | 3.71 | 14.34 | 25.00 | 15.41 | 4.22 | |
NSSR-AL | 4.30 | 35.45 | 4.37 | 1.35 | 6.02 | 32.54 | 5.90 | 1.85 | 5.52 | 33.29 | 5.39 | 1.73 | |
AL-NSSR | 3.62 | 36.95 | 4.10 | 1.17 | 3.95 | 36.19 | 4.40 | 1.28 | 4.68 | 34.72 | 5.19 | 1.52 | |
DDL | 3.55 | 37.11 | 3.96 | 1.16 | 3.77 | 36.59 | 4.12 | 1.23 | 4.14 | 35.79 | 4.45 | 1.34 | |
Cuprite Mine | HSSF | 7.54 | 30.58 | 6.94 | 13.60 | 8.02 | 30.04 | 6.84 | 14.37 | 8.17 | 29.89 | 6.59 | 13.41 |
GTNN | 7.49 | 30.63 | 6.83 | 10.91 | 9.04 | 29.00 | 8.14 | 13.03 | 11.31 | 27.06 | 9.96 | 16.18 | |
NSSR-AL | 3.46 | 37.33 | 3.13 | 4.56 | 3.87 | 36.37 | 3.47 | 5.61 | 4.69 | 34.71 | 4.17 | 7.16 | |
AL-NSSR | 4.40 | 35.26 | 4.09 | 5.65 | 4.85 | 34.40 | 4.52 | 6.78 | 6.13 | 32.38 | 5.69 | 8.63 | |
DDL | 2.91 | 38.85 | 2.75 | 3.29 | 3.50 | 37.24 | 3.27 | 4.20 | 4.11 | 35.85 | 3.84 | 5.08 |
Tab. 1 Comparison of experimental results of different spatio-spectral fusion algorithms with magnification factor of 8
图像 | 算法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | ||
Pavia Center | HSSF | 7.70 | 30.40 | 9.24 | 2.49 | 9.05 | 28.99 | 10.59 | 2.88 | 11.03 | 27.28 | 12.65 | 3.45 |
GTNN | 9.27 | 28.78 | 12.06 | 3.01 | 10.88 | 27.40 | 13.82 | 3.49 | 13.25 | 25.68 | 16.24 | 4.19 | |
NSSR-AL | 4.29 | 35.49 | 4.92 | 1.46 | 4.73 | 34.63 | 5.32 | 1.59 | 5.66 | 33.07 | 6.22 | 1.88 | |
AL-NSSR | 3.78 | 36.59 | 4.88 | 1.36 | 4.23 | 35.60 | 5.43 | 1.53 | 5.35 | 33.56 | 6.69 | 1.90 | |
DDL | 3.64 | 36.90 | 4.66 | 1.32 | 3.71 | 36.74 | 4.65 | 1.32 | 4.27 | 35.51 | 5.29 | 1.51 | |
Pavia University | HSSF | 8.43 | 29.61 | 8.66 | 2.59 | 10.46 | 27.74 | 10.71 | 3.21 | 11.59 | 26.85 | 11.55 | 3.48 |
GTNN | 11.41 | 26.98 | 12.49 | 3.36 | 12.58 | 26.14 | 13.69 | 3.71 | 14.34 | 25.00 | 15.41 | 4.22 | |
NSSR-AL | 4.30 | 35.45 | 4.37 | 1.35 | 6.02 | 32.54 | 5.90 | 1.85 | 5.52 | 33.29 | 5.39 | 1.73 | |
AL-NSSR | 3.62 | 36.95 | 4.10 | 1.17 | 3.95 | 36.19 | 4.40 | 1.28 | 4.68 | 34.72 | 5.19 | 1.52 | |
DDL | 3.55 | 37.11 | 3.96 | 1.16 | 3.77 | 36.59 | 4.12 | 1.23 | 4.14 | 35.79 | 4.45 | 1.34 | |
Cuprite Mine | HSSF | 7.54 | 30.58 | 6.94 | 13.60 | 8.02 | 30.04 | 6.84 | 14.37 | 8.17 | 29.89 | 6.59 | 13.41 |
GTNN | 7.49 | 30.63 | 6.83 | 10.91 | 9.04 | 29.00 | 8.14 | 13.03 | 11.31 | 27.06 | 9.96 | 16.18 | |
NSSR-AL | 3.46 | 37.33 | 3.13 | 4.56 | 3.87 | 36.37 | 3.47 | 5.61 | 4.69 | 34.71 | 4.17 | 7.16 | |
AL-NSSR | 4.40 | 35.26 | 4.09 | 5.65 | 4.85 | 34.40 | 4.52 | 6.78 | 6.13 | 32.38 | 5.69 | 8.63 | |
DDL | 2.91 | 38.85 | 2.75 | 3.29 | 3.50 | 37.24 | 3.27 | 4.20 | 4.11 | 35.85 | 3.84 | 5.08 |
图像 | 算法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | ||
Pavia Center | HSSF | 10.09 | 28.05 | 11.22 | 1.69 | 10.60 | 27.62 | 12.01 | 1.80 | 11.49 | 26.92 | 12.83 | 1.90 |
GTNN | 10.24 | 27.92 | 12.19 | 1.62 | 11.61 | 26.84 | 13.51 | 1.83 | 14.06 | 25.17 | 15.66 | 2.21 | |
NSSR-AL | 5.58 | 33.18 | 6.32 | 0.92 | 6.40 | 32.01 | 7.23 | 1.06 | 6.96 | 31.27 | 7.85 | 1.13 | |
AL-NSSR | 5.53 | 33.28 | 6.73 | 0.98 | 8.02 | 30.05 | 9.15 | 1.43 | 9.09 | 28.96 | 10.61 | 1.62 | |
DDL | 5.12 | 33.94 | 6.16 | 0.92 | 5.14 | 33.90 | 6.14 | 0.91 | 6.40 | 32.00 | 7.81 | 1.14 | |
Pavia University | HSSF | 9.67 | 28.42 | 9.31 | 1.48 | 10.91 | 27.38 | 10.21 | 1.66 | 12.70 | 26.05 | 12.01 | 1.92 |
GTNN | 12.70 | 26.05 | 12.22 | 1.88 | 14.09 | 25.15 | 13.29 | 2.08 | 16.23 | 23.92 | 14.86 | 2.37 | |
NSSR-AL | 5.40 | 33.48 | 5.36 | 0.83 | 6.48 | 31.90 | 6.33 | 0.98 | 7.47 | 30.66 | 7.18 | 1.12 | |
AL-NSSR | 4.96 | 34.23 | 5.23 | 0.78 | 5.95 | 32.63 | 6.08 | 0.93 | 8.41 | 29.64 | 8.07 | 1.32 | |
DDL | 4.84 | 34.43 | 5.01 | 0.76 | 5.37 | 33.52 | 5.48 | 0.86 | 6.75 | 31.53 | 6.63 | 1.08 | |
Cuprite Mine | HSSF | 8.69 | 29.34 | 8.24 | 10.58 | 9.14 | 28.91 | 8.19 | 7.79 | 10.37 | 27.81 | 8.03 | 8.07 |
GTNN | 9.91 | 28.20 | 8.36 | 9.13 | 12.06 | 26.50 | 10.01 | 10.58 | 13.98 | 25.22 | 11.56 | 11.41 | |
NSSR-AL | 4.68 | 34.72 | 4.26 | 2.24 | 5.23 | 33.76 | 4.85 | 5.07 | 6.46 | 31.93 | 5.95 | 6.27 | |
AL-NSSR | 5.36 | 33.54 | 4.94 | 3.20 | 5.88 | 32.73 | 5.44 | 3.94 | 6.06 | 32.48 | 5.71 | 4.95 | |
DDL | 4.58 | 34.90 | 4.22 | 2.28 | 5.07 | 34.02 | 4.68 | 2.43 | 5.09 | 33.99 | 4.82 | 2.85 |
Tab. 2 Comparison of experimental results of different spatio-spectral fusion algorithms with magnification factor of 16
图像 | 算法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | RMSE | PSNR/dB | SAM/(°) | ERGAS | ||
Pavia Center | HSSF | 10.09 | 28.05 | 11.22 | 1.69 | 10.60 | 27.62 | 12.01 | 1.80 | 11.49 | 26.92 | 12.83 | 1.90 |
GTNN | 10.24 | 27.92 | 12.19 | 1.62 | 11.61 | 26.84 | 13.51 | 1.83 | 14.06 | 25.17 | 15.66 | 2.21 | |
NSSR-AL | 5.58 | 33.18 | 6.32 | 0.92 | 6.40 | 32.01 | 7.23 | 1.06 | 6.96 | 31.27 | 7.85 | 1.13 | |
AL-NSSR | 5.53 | 33.28 | 6.73 | 0.98 | 8.02 | 30.05 | 9.15 | 1.43 | 9.09 | 28.96 | 10.61 | 1.62 | |
DDL | 5.12 | 33.94 | 6.16 | 0.92 | 5.14 | 33.90 | 6.14 | 0.91 | 6.40 | 32.00 | 7.81 | 1.14 | |
Pavia University | HSSF | 9.67 | 28.42 | 9.31 | 1.48 | 10.91 | 27.38 | 10.21 | 1.66 | 12.70 | 26.05 | 12.01 | 1.92 |
GTNN | 12.70 | 26.05 | 12.22 | 1.88 | 14.09 | 25.15 | 13.29 | 2.08 | 16.23 | 23.92 | 14.86 | 2.37 | |
NSSR-AL | 5.40 | 33.48 | 5.36 | 0.83 | 6.48 | 31.90 | 6.33 | 0.98 | 7.47 | 30.66 | 7.18 | 1.12 | |
AL-NSSR | 4.96 | 34.23 | 5.23 | 0.78 | 5.95 | 32.63 | 6.08 | 0.93 | 8.41 | 29.64 | 8.07 | 1.32 | |
DDL | 4.84 | 34.43 | 5.01 | 0.76 | 5.37 | 33.52 | 5.48 | 0.86 | 6.75 | 31.53 | 6.63 | 1.08 | |
Cuprite Mine | HSSF | 8.69 | 29.34 | 8.24 | 10.58 | 9.14 | 28.91 | 8.19 | 7.79 | 10.37 | 27.81 | 8.03 | 8.07 |
GTNN | 9.91 | 28.20 | 8.36 | 9.13 | 12.06 | 26.50 | 10.01 | 10.58 | 13.98 | 25.22 | 11.56 | 11.41 | |
NSSR-AL | 4.68 | 34.72 | 4.26 | 2.24 | 5.23 | 33.76 | 4.85 | 5.07 | 6.46 | 31.93 | 5.95 | 6.27 | |
AL-NSSR | 5.36 | 33.54 | 4.94 | 3.20 | 5.88 | 32.73 | 5.44 | 3.94 | 6.06 | 32.48 | 5.71 | 4.95 | |
DDL | 4.58 | 34.90 | 4.22 | 2.28 | 5.07 | 34.02 | 4.68 | 2.43 | 5.09 | 33.99 | 4.82 | 2.85 |
[1] | GUERRI M F, DISTANTE C, SPAGNOLO P, et al. Deep learning techniques for hyperspectral image analysis in agriculture: a review[J]. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2024, 12: No.100062. |
[2] | GU Y, LIU T, GAO G, et al. Multimodal hyperspectral remote sensing: an overview and perspective [J]. SCIENCE CHINA Information Sciences, 2021, 64(2): No.121301. |
[3] | WANG M, XU Y, WANG Z, et al. Deep margin cosine autoencoder-based medical hyperspectral image classification for tumor diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: No.2520512. |
[4] | 赖星锦,郑致远,杜晓颜,等. 基于超像素锚图二重降维的高光谱聚类算法[J]. 计算机应用, 2022, 42(7): 2088-2093. |
LAI X J, ZHENG Z Y, DU X Y, XU S, et al. Hyperspectral clustering algorithm by double dimension-reduction based on super-pixel and anchor graph [J]. Journal of Computer Applications, 2022, 42(7): 2088-2093. | |
[5] | 聂江涛,张磊,魏巍,等. 高光谱图像超分辨率重建技术研究进展[J]. 中国图象图形学报, 2023, 28(6): 1685-1697. |
NIE J T, ZHANG L, WEI W, et al. A survey of hyperspectral image super-resolution method [J]. Journal of Image and Graphics, 2023, 28(6): 1685-1697. | |
[6] | LI Q, WANG Q, LI X. Mixed 2D/3D convolutional network for hyperspectral image super-resolution [J]. Remote Sensing, 2020, 12(10): No.1660. |
[7] | XU Y, HOU J, ZHU X, et al. Hyperspectral image super-resolution with ConvLSTM skip-connections [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5519016. |
[8] | DONG W, FU F, SHI G, et al. Hyperspectral image super-resolution via non-negative structured sparse representation [J]. IEEE Transactions on Image Processing, 2016, 25(5): 2337-2352. |
[9] | DIAN R, LI S. Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization [J]. IEEE Transactions on Image Processing, 2019, 28(10): 5135-5146. |
[10] | YANG J, WU C, YOU T, et al. Hierarchical spatio-spectral fusion for hyperspectral image super resolution via sparse representation and pre-trained deep model [J]. Knowledge-Based Systems, 2023, 260: No.110170. |
[11] | FU X, LIANG H, JIA S. Mixed noise-oriented hyperspectral and multispectral image fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: No.5526916. |
[12] | KESHAVA N, MUSTARD J F. Spectral unmixing [J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57. |
[13] | YOKOYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 528-537. |
[14] | WU X, XIAO S, DONG W, et al. Coupled matrix factorization constrained deep hyperspectral and multispectral image fusion [J]. IEEE Sensors Journal, 2024, 24(5): 6392-6404. |
[15] | HUANG B, SONG H, CUI H, et al. Spatial and spectral image fusion using sparse matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1693-1704. |
[16] | DIAN R, LI S, FANG L. Learning a low tensor-train rank representation for hyperspectral image super-resolution [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672-2683. |
[17] | PENG Y, LI W, LUO X, et al. Hyperspectral image super-resolution via sparsity regularization based spatial-spectral tensor subspace representation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11707-11722. |
[18] | DIAN R, LIU Y, LI S. Hyperspectral image fusion via a novel generalized tensor nuclear norm regularization [J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(4): 7437-7448. |
[19] | LI Q, YUAN Y, WANG Q. Multiscale factor joint learning for hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: No.5523110. |
[20] | LI J, ZHENG K, GAO L, et al. Enhanced deep image prior for unsupervised hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: No.5504218. |
[21] | YANG Y, WANG Y, WANG H, et al. Spectral enhanced sparse transformer network for hyperspectral super-resolution reconstruction [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 17278-17291. |
[22] | LI J, ZHENG K, GAO L, et al. Model-informed multistage unsupervised network for hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5516117. |
[23] | XU S, CAO X, PENG J, et al. Hyperspectral image denoising by asymmetric noise modeling [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5545214. |
[24] | MAIRAL J, BACH F, PONCE J, et al. Online dictionary learning for sparse coding [C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 689-696. |
[25] | Grupo de Inteligencia Computacional. Hyperspectral remote sensing scenes [EB/OL]. [2025-06-04]. . |
[26] | YUHAS R H, GOETZ A F H, BOARDMAN J W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm [EB/OL]. [2025-05-11]. . |
[27] | WALD L. Quality of high resolution synthesised images: is there a simple criterion? [C]// Proceedings of the 3rd Conference “Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images”. [S.l.]: SEE/URISCA, 2000: 99-103. |
[1] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[2] | Dawei YANG, Xihai XU, Wei SONG. Relation extraction method combining semantic enhancement and perception attention [J]. Journal of Computer Applications, 2025, 45(6): 1801-1808. |
[3] | Shuang LIU, Daqing LIU, Jiana MENG, Di ZHAO. Hyper-relational knowledge graph completion method fusing noise filtering [J]. Journal of Computer Applications, 2025, 45(6): 1817-1826. |
[4] | Chao XU, Shufen ZHANG, Haitian CHEN, Lulu PENG, Shuaihua ZHANG. Federated learning method based on adaptive differential privacy and client selection optimization [J]. Journal of Computer Applications, 2025, 45(2): 482-489. |
[5] | Qianting ZHANG, Liying HU, Lifei CHEN. Robust shapelet representation method for time series [J]. Journal of Computer Applications, 2025, 45(2): 436-443. |
[6] | Jinfu WU, Yi LIU. Fast adversarial training method based on random noise and adaptive step size [J]. Journal of Computer Applications, 2024, 44(6): 1807-1815. |
[7] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
[8] | Yan SHI, Yue WU, Dongqing ZHAO. Hybrid intelligent reflecting surface and relay assisted secure transmission scheme based on cooperative interference [J]. Journal of Computer Applications, 2024, 44(12): 3893-3898. |
[9] | Pengbo WANG, Wuyang SHAN, Jun LI, Mao TIAN, Deng ZOU, Zhanfeng FAN. Robust splicing forensic algorithm against high-intensity salt-and-pepper noise [J]. Journal of Computer Applications, 2024, 44(10): 3177-3184. |
[10] | Yumin SONG, Hao SUN, Zhan LI, Chang’an LI, Xiaoshu QIAO. Hatch recognition algorithm of bulk cargo ship based on incomplete point cloud normal filtering and compensation [J]. Journal of Computer Applications, 2024, 44(1): 324-330. |
[11] | Guolong YUAN, Yujin ZHANG, Yang LIU. Image tampering forensics network based on residual feedback and self-attention [J]. Journal of Computer Applications, 2023, 43(9): 2925-2931. |
[12] | Feiqiao SHAN, Zhaowei WANG, Yue SHEN. Time synchronization method based on precision time protocol in industrial wireless sensor networks [J]. Journal of Computer Applications, 2023, 43(7): 2255-2260. |
[13] | Mengyi LI, Xia FANG, Hongbo ZHENG, Xujia QIN. Oriented line integral convolution algorithm for flow field based on information entropy [J]. Journal of Computer Applications, 2023, 43(4): 1233-1239. |
[14] | Boyi FU, Yuncong PENG, Xin LAN, Xiaolin QIN. Survey of label noise learning algorithms based on deep learning [J]. Journal of Computer Applications, 2023, 43(3): 674-684. |
[15] | Peng WANG, Dawei ZHANG, Zhengjun LU, Linhao LI. Moving object detection based on reliability low-rank factorization and generalized diversity difference [J]. Journal of Computer Applications, 2023, 43(2): 514-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||