Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1801-1808.DOI: 10.11772/j.issn.1001-9081.2024060776
• Artificial intelligence • Previous Articles
Dawei YANG1, Xihai XU2, Wei SONG1,3()
Received:
2024-06-12
Revised:
2024-08-08
Accepted:
2024-08-16
Online:
2024-09-10
Published:
2025-06-10
Contact:
Wei SONG
About author:
YANG Dawei, born in 1995, M. S. candidate. His research interests include nature language processing, relation extraction.Supported by:
通讯作者:
宋威
作者简介:
杨大伟(1995—),男,山东泰安人,硕士研究生,CCF会员,主要研究方向:自然语言处理、关系抽取基金资助:
CLC Number:
Dawei YANG, Xihai XU, Wei SONG. Relation extraction method combining semantic enhancement and perception attention[J]. Journal of Computer Applications, 2025, 45(6): 1801-1808.
杨大伟, 徐西海, 宋威. 结合语义增强和感知注意力的关系抽取方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1801-1808.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060776
标签 | 句子 | 显著性信息 | 对错 |
---|---|---|---|
founder | S1:Bill Gates is the principal founder of Microsoft. | founder | True |
S2: Bill Gates founded Microsoft in 1975. | founded | True | |
S3:Bill Gates speaking at a Microsoft held …… | — | False |
Tab. 1 Examples of RE
标签 | 句子 | 显著性信息 | 对错 |
---|---|---|---|
founder | S1:Bill Gates is the principal founder of Microsoft. | founder | True |
S2: Bill Gates founded Microsoft in 1975. | founded | True | |
S3:Bill Gates speaking at a Microsoft held …… | — | False |
数据集 | 训练集 | 测试集 | ||
---|---|---|---|---|
实体对数 | 示例数 | 实体对数 | 示例数 | |
NYT-10 | 293 003 | 570 088 | 96 678 | 172 448 |
GDS | 6 498 | 11 297 | 3 247 | 5 663 |
Tab. 2 Statistics of NYT-10 and GDS datasets
数据集 | 训练集 | 测试集 | ||
---|---|---|---|---|
实体对数 | 示例数 | 实体对数 | 示例数 | |
NYT-10 | 293 003 | 570 088 | 96 678 | 172 448 |
GDS | 6 498 | 11 297 | 3 247 | 5 663 |
超参数 | 值 | |
---|---|---|
NYT-10数据集 | GDS数据集 | |
词嵌入维度 | 50 | 50 |
卷积核数k | 230 | 230 |
位置嵌入维度 | 5 | 5 |
卷积核大小 | 3 | 3 |
超参数λ | 20 | 17 |
GCN输入层数 | 100 | 150 |
GCN的隐藏层数 | 750 | 900 |
GCN的输出层数 | 1 250 | 150 |
分类器输入层数 | 690 | 300 |
丢失率dropout | 0.5 | 0.5 |
超参数 | 0.1 | 0.1 |
学习率 | 0.5 | 0.5 |
batch size | 160 | 160 |
Tab. 3 Hyperparameter setting of two datasets
超参数 | 值 | |
---|---|---|
NYT-10数据集 | GDS数据集 | |
词嵌入维度 | 50 | 50 |
卷积核数k | 230 | 230 |
位置嵌入维度 | 5 | 5 |
卷积核大小 | 3 | 3 |
超参数λ | 20 | 17 |
GCN输入层数 | 100 | 150 |
GCN的隐藏层数 | 750 | 900 |
GCN的输出层数 | 1 250 | 150 |
分类器输入层数 | 690 | 300 |
丢失率dropout | 0.5 | 0.5 |
超参数 | 0.1 | 0.1 |
学习率 | 0.5 | 0.5 |
batch size | 160 | 160 |
方法 | NYT-10 | GDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P@100 | P@200 | P@300 | P@M | AUC | P@100 | P@200 | P@300 | P@M | AUC | |
PCNN+ATT | 72.9 | 71.5 | 69.6 | 71.3 | 38.4 | 96.4 | 93.3 | 91.5 | 93.7 | 79.9 |
PCNN+ATT+ENT | 83.0 | 80.0 | 74.7 | 79.2 | 44.8 | 93.9 | 93.7 | 93.5 | 93.7 | 84.9 |
MUTICAST | 83.7 | 79.2 | 74.2 | 79.0 | 40.2 | — | — | — | — | — |
FAN | 85.8 | 83.4 | 79.9 | 83.0 | 44.8 | — | — | — | — | — |
DSRE‑VAE | 84.0 | 77.0 | 75.3 | 78.8 | 43.5 | 96.9 | 96.7 | 96.3 | 96.6 | 87.6 |
CIL | 81.5 | 75.5 | 72.1 | 76.4 | 42.1 | 97.0 | 96.5 | 96.5 | 96.6 | 90.2 |
HiCLRE | 82.0 | 78.5 | 74.0 | 78.2 | 45.3 | — | — | — | — | — |
CGRE | 88.9 | 86.4 | 81.8 | 85.7 | 47.4 | 98.0 | 96.7 | 96.5 | 97.0 | 90.3 |
PARE | 90.0 | 84.0 | 82.3 | 85.4 | 47.5 | 98.5 | 97.5 | 97.0 | 97.7 | 90.4 |
SPRE | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 | 98.5 | 98.0 | 97.0 | 97.8 | 90.5 |
Tab. 4 P@N (N=100, 200, 300), P@M and AUC of SPRE and comparison methods on NYT-10 and GDS datasets
方法 | NYT-10 | GDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P@100 | P@200 | P@300 | P@M | AUC | P@100 | P@200 | P@300 | P@M | AUC | |
PCNN+ATT | 72.9 | 71.5 | 69.6 | 71.3 | 38.4 | 96.4 | 93.3 | 91.5 | 93.7 | 79.9 |
PCNN+ATT+ENT | 83.0 | 80.0 | 74.7 | 79.2 | 44.8 | 93.9 | 93.7 | 93.5 | 93.7 | 84.9 |
MUTICAST | 83.7 | 79.2 | 74.2 | 79.0 | 40.2 | — | — | — | — | — |
FAN | 85.8 | 83.4 | 79.9 | 83.0 | 44.8 | — | — | — | — | — |
DSRE‑VAE | 84.0 | 77.0 | 75.3 | 78.8 | 43.5 | 96.9 | 96.7 | 96.3 | 96.6 | 87.6 |
CIL | 81.5 | 75.5 | 72.1 | 76.4 | 42.1 | 97.0 | 96.5 | 96.5 | 96.6 | 90.2 |
HiCLRE | 82.0 | 78.5 | 74.0 | 78.2 | 45.3 | — | — | — | — | — |
CGRE | 88.9 | 86.4 | 81.8 | 85.7 | 47.4 | 98.0 | 96.7 | 96.5 | 97.0 | 90.3 |
PARE | 90.0 | 84.0 | 82.3 | 85.4 | 47.5 | 98.5 | 97.5 | 97.0 | 97.7 | 90.4 |
SPRE | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 | 98.5 | 98.0 | 97.0 | 97.8 | 90.5 |
方法 | NYT-10 | GDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P@100 | P@200 | P@300 | P@M | AUC | P@100 | P@200 | P@300 | P@M | AUC | |
SPRE w/o PAM | 90.0 | 84.0 | 78.7 | 84.2 | 45.7 | 98.0 | 95.0 | 95.3 | 96.1 | 88.3 |
SPRE w/o SFP | 89.0 | 85.0 | 80.7 | 84.9 | 48.2 | 98.0 | 97.0 | 93.7 | 96.2 | 89.6 |
SPRE w/o all | 83.0 | 80.0 | 74.7 | 79.2 | 44.8 | 93.9 | 93.7 | 93.5 | 94.2 | 84.9 |
SPRE | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 | 98.5 | 98.0 | 97.0 | 97.8 | 90.5 |
Tab. 5 of P@N (N=100, 200, 300), P@M and AUC of SPRE and ablation methods on NYT-10 and GDS datasets
方法 | NYT-10 | GDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P@100 | P@200 | P@300 | P@M | AUC | P@100 | P@200 | P@300 | P@M | AUC | |
SPRE w/o PAM | 90.0 | 84.0 | 78.7 | 84.2 | 45.7 | 98.0 | 95.0 | 95.3 | 96.1 | 88.3 |
SPRE w/o SFP | 89.0 | 85.0 | 80.7 | 84.9 | 48.2 | 98.0 | 97.0 | 93.7 | 96.2 | 89.6 |
SPRE w/o all | 83.0 | 80.0 | 74.7 | 79.2 | 44.8 | 93.9 | 93.7 | 93.5 | 94.2 | 84.9 |
SPRE | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 | 98.5 | 98.0 | 97.0 | 97.8 | 90.5 |
P@100 | P@200 | P@300 | P@M | AUC | |
---|---|---|---|---|---|
0.00 | 90.0 | 85.5 | 84.3 | 86.6 | 47.7 |
0.05 | 91.0 | 86.5 | 85.3 | 87.6 | 48.1 |
0.10 | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 |
0.15 | 90.0 | 90.5 | 85.0 | 88.5 | 48.7 |
0.20 | 87.0 | 81.0 | 81.3 | 83.1 | 47.8 |
Tab. 6 P@N and AUC of SPRE under different γ values on NYT-10 dataset
P@100 | P@200 | P@300 | P@M | AUC | |
---|---|---|---|---|---|
0.00 | 90.0 | 85.5 | 84.3 | 86.6 | 47.7 |
0.05 | 91.0 | 86.5 | 85.3 | 87.6 | 48.1 |
0.10 | 92.0 | 88.0 | 83.3 | 87.8 | 49.6 |
0.15 | 90.0 | 90.5 | 85.0 | 88.5 | 48.7 |
0.20 | 87.0 | 81.0 | 81.3 | 83.1 | 47.8 |
1 | KEJRIWAL M, SEQUEDA J, LOPZ V. Knowledge graphs: construction management and querying [J]. Semantic Web, 2019, 10(6): 961-962. |
2 | SUN Y, TANG D, DUAN N, et al. Joint learning of question answering and question generation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(5): 971-982. |
3 | ALLAHYARI M, POURIYEH S, ASSEFI M, et al. Text summarization techniques: a brief survey [J]. International Journal of Advanced Computer Science and Applications, 2017, 8(10): 397-405. |
4 | 郭喜跃,何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015, 42(2): 14-17. |
GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2): 14-17. | |
5 | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg: ACL, 2009: 1003-1011. |
6 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. |
7 | RIEDEL S, YAO L, McCALLUM A K. Modeling relations and their mentions without labeled text[C]// Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 6323. Berlin: Springer, 2010: 148-163. |
8 | ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1753-1762. |
9 | LIN Y, SHEN S, LIU Z, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 2124-2133. |
10 | VASWANI A, SHAZEER N, PARMAR N. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
11 | XING R, LUO J. Distant supervised relation extraction with separate head-tail CNN [C]// Proceedings of the 5th Workshop on Noisy User-generated Text. Stroudsburg: ACL, 2019: 249-258. |
12 | VASHISHTH S, JOSHI R, PRAYAGA S S, et al. Reside: improving distantly-supervised neural relation extraction using side information [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 1257-1266. |
13 | JAT S, KHANDELWAL S, TALUKAR P. Improving distantly supervised relation extraction using word and entity based attention[EB/OL]. [2024-05-13].. |
14 | 鄂海红,张文静,肖思琪,等. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6): 1793-1818. |
E H H, ZHANG W J, XIAO S Q, et al. Survey of entity relationship extraction based on deep learning [J]. Journal of Software, 2019, 30(6): 1793-1818. | |
15 | 江南大学. 基于去噪卷积神经网络的远程监督实体关系抽取方法: 201911306495.X[P]. 2020-04-28. |
Jiangnan University. Remote supervision entity relation extraction method based on denoising convolutional neural networks: 201911306495.X[P]. 2020-04-28. | |
16 | 江南大学. 基于改进深度残差网络和注意力机制的实体关系抽取方法: 201910880164.0[P]. 2019-12-27. |
Jiangnan University. Entity relation extraction method based on improved deep residual networks and attention mechanism: 201910880164.0 [P]. 2019-12-27. | |
17 | LIU T, WANG K, CHANG B, et al. A soft-label method for noise tolerant distantly supervised relation extraction[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1790-1795. |
18 | QIN P, XU W, WANG W Y. DSGAN: generative adversarial training for distant supervision relation extraction[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 496-505. |
19 | FENG J, HUANG M, ZHAO L, et al. Reinforcement learning for relation classification from noisy data [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 5779-5786. |
20 | LIANG T M, LIU Y, ZHANG H, et al. Distantly-supervised long-tailed relation extraction using constraint graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 6852-6865. |
21 | SONG W, GU W, ZHU F, et al. Interaction-and-response network for distantly supervised relation extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9523-9537. |
22 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2024-05-10].. |
23 | LI Y, LONG G, SHEN T, et al. Self-attention enhanced selective gate with entity-aware embedding for distantly supervised relation extraction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8269-8276. |
24 | 宋威,朱富鑫. 基于全局和局部特征感知网络的关系提取方法[J]. 中文信息学报, 2020, 34(11): 96-103. |
SONG W, ZHU F X. Global and local feature-aware network for relation extraction[J]. Journal of Chinese Information Processing, 2020, 34(11): 96-103. | |
25 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
26 | CHEN T, SHI H, LIU L, et al. Empower distantly supervised relation extraction with collaborative adversarial training[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12675-12682. |
27 | HAO K, YU B, HU W. Knowing false negatives: an adversarial training method for distantly supervised relation extraction[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9661-9672. |
28 | CHRISTOPOULOU F, MIWA M, ANANIADOU S. Distantly supervised relation extraction with sentence reconstruction and knowledgebase priors [C]// Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 11-26. |
29 | CHEN T, SHI H, TANG S, et al. CIL: contrastive instance learning framework for distantly supervised relation extraction [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 6191-6200. |
30 | LI D, ZHANG T, HU N, et al. HiCLRE: a hierarchical contrastive learning framework for distantly supervised relation extraction[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022:2567-2578. |
31 | RATHORE V, BADOLA K, SINGLA P, et al. PARE: a simple and strong baseline for monolingual and multilingual distantly supervised relation extraction [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2022:340-354. |
[1] | Jie HU, Cui WU, Jun SUN, Yan ZHANG. Document-level relation extraction model based on anaphora and logical reasoning [J]. Journal of Computer Applications, 2025, 45(5): 1496-1503. |
[2] | Bin LI, Min LIN, Siriguleng, Yingjie GAO, Yurong WANG, Shujun ZHANG. Joint entity-relation extraction method for ancient Chinese books based on prompt learning and global pointer network [J]. Journal of Computer Applications, 2025, 45(1): 75-81. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[5] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[6] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. |
[7] | Quan YUAN, Changping CHEN, Ze CHEN, Linfeng ZHAN. Twice attention mechanism distantly supervised relation extraction based on BERT [J]. Journal of Computer Applications, 2024, 44(4): 1080-1085. |
[8] | Andi GUO, Zhen JIA, Tianrui LI. High-precision entity and relation extraction in medical domain based on pseudo-entity data augmentation [J]. Journal of Computer Applications, 2024, 44(2): 393-402. |
[9] | Kezheng CHEN, Xiaoran GUO, Yong ZHONG, Zhenping LI. Relation extraction method based on negative training and transfer learning [J]. Journal of Computer Applications, 2023, 43(8): 2426-2430. |
[10] | Shengwei MA, Ruizhang HUANG, Lina REN, Chuan LIN. Structured deep text clustering model based on multi-layer semantic fusion [J]. Journal of Computer Applications, 2023, 43(8): 2364-2369. |
[11] | Menglin HUANG, Lei DUAN, Yuanhao ZHANG, Peiyan WANG, Renhao LI. Prompt learning based unsupervised relation extraction model [J]. Journal of Computer Applications, 2023, 43(7): 2010-2016. |
[12] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
[13] | Shunhang CHENG, Zhihua LI, Tao WEI. Threat intelligence entity relation extraction method integrating bootstrapping and semantic role labeling [J]. Journal of Computer Applications, 2023, 43(5): 1445-1453. |
[14] | Quan YUAN, Yunpeng XU, Chengliang TANG. Document-level relation extraction method based on path labels [J]. Journal of Computer Applications, 2023, 43(4): 1029-1035. |
[15] | Liang XU, Chun ZHANG, Ning ZHANG, Xuetao TIAN. Zero-shot relation extraction model via multi-template fusion in Prompt [J]. Journal of Computer Applications, 2023, 43(12): 3668-3675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||