| 1 | POUYANFAR S, SADIQ S, YAN Y, et al. A survey on deep learning: algorithms, techniques, and applications[J]. ACM Computing Surveys, 2018, 51(5): No.92. | 
																													
																							| 2 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. | 
																													
																							| 3 | ZHU L, LIU Z, HAN S. Deep leakage from gradients[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 14774-14784. | 
																													
																							| 4 | SONG C, RISTENPART T, SHMATIKOV V. Machine learning models that remember too much[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 587-601. | 
																													
																							| 5 | DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]// Proceedings of the 2006 Theory of Cryptography Conference, LNCS 3876. Berlin: Springer, 2006: 265-284. | 
																													
																							| 6 | RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[M]// DeMILLO R A, DOBKIN D P, JONES A K, et al. Foundations of secure computation. Cambridge: Academia Press, 1978: 169-179. | 
																													
																							| 7 | LI Y, ZHOU Y, JOLFAEI A, et al. Privacy-preserving federated learning framework based on chained secure multiparty computing[J]. IEEE Internet of Things Journal, 2021, 8(8): 6178-6186. | 
																													
																							| 8 | AHMAD A, LUO W, ROBLES-KELLY A. Robust federated learning under statistical heterogeneity via Hessian spectral decomposition[J]. Pattern Recognition, 2023, 141: No.109635. | 
																													
																							| 9 | WANG Z, HU Q, ZOU X. Can we trust the similarity measurement in federated learning?[EB/OL]. [2023-12-23].. | 
																													
																							| 10 | ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. | 
																													
																							| 11 | GEYER R C, KLEIN T, NABI M. Differentially private federated learning: a client level perspective[EB/OL]. [2023-11-16].. | 
																													
																							| 12 | ZHENG Q, CHEN S, LONG Q, et al. Federated f-differential privacy[C]// Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2021: 2251-2259. | 
																													
																							| 13 | SINGH I, ZHOU H, YANG K, et al. Differentially-private federated neural architecture search[EB/OL]. [2023-10-18].. | 
																													
																							| 14 | TRUEX S, LIU L, CHOW K H, et al. LDP-Fed: federated learning with local differential privacy[C]// Proceedings of the 3rd ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 61-66. | 
																													
																							| 15 | WEI K, LI J, DING M, et al. User-level privacy-preserving federated learning: analysis and performance optimization[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3388-3401. | 
																													
																							| 16 | 康海燕,冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. | 
																													
																							|  | KANG H Y, JI Y R. Research on federated learning approach based on local differential privacy[J]. Journal on Communications, 2022, 43(10): 94-105. | 
																													
																							| 17 | VAN DER VEEN K L, SEGGERS R, BLOEM P, et al. Three tools for practical differential privacy[EB/OL]. [2023-10-09].. | 
																													
																							| 18 | FU J, CHEN Z, HAN X. Adapt DP-FL: differentially private federated learning with adaptive noise[C]// Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2022: 656-663. | 
																													
																							| 19 | XU Z, SHI S, LIU A X, et al. An adaptive and fast convergent approach to differentially private deep learning[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 1867-1876. | 
																													
																							| 20 | YU L, LIU L, PU C, et al. Differentially private model publishing for deep learning[C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 332-349. | 
																													
																							| 21 | 张少波,张激勇,朱更明,等. 基于Bregman散度和差分隐私的个性化联邦学习方法[J]. 软件学报, 2024, 35(11): 5249-5262. | 
																													
																							|  | ZHANG S B, ZHANG J Y, ZHU G M, et al. Personalized federated learning method based on Bregman divergence and differential privacy[J]. Journal of Software, 2024, 35(11): 5249-5262. | 
																													
																							| 22 | 尹春勇,屈锐. 基于个性化差分隐私的联邦学习算法[J]. 计算机应用, 2023, 43(4):1160-1168. | 
																													
																							|  | YIN C Y, QU R. Federated learning algorithm based on personalized differential privacy[J]. Journal of Computer Applications, 2023, 43(4):1160-1168. | 
																													
																							| 23 | GOETZ J, MALIK K, BUI D, et al. Active federated learning[EB/OL]. [2023-11-01].. | 
																													
																							| 24 | XIE Y, ZHANG L. Federated learning with personalized differential privacy combining client selection[C]// Proceedings of the 8th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2022: 79-87. | 
																													
																							| 25 | LI T, SANJABI M, BEIRAMI A, et al. Fair resource allocation in federated learning[EB/OL]. [2024-01-01].. | 
																													
																							| 26 | YANG C, ZHAO X. Study on the selection method of federated learning clients for smart manufacturing[J]. Electronics, 2023, 12(11): No.2532. | 
																													
																							| 27 | YANG Q, LIU Y, CHENG Y, et al. Federated learning, SLAIML[M]. Cham: Springer, 2020: 1-189. | 
																													
																							| 28 | DWORK C. Differential privacy: a survey of results[C]// Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin: Springer, 2008: 1-19. | 
																													
																							| 29 | DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends® in Theoretical Computer Science, 2014, 9(3/4): 211-407. |