Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 436-443.DOI: 10.11772/j.issn.1001-9081.2024020163

• Data science and technology • Previous Articles    

Robust shapelet representation method for time series

Qianting ZHANG1,2, Liying HU1,2, Lifei CHEN1,2,3()   

  1. 1.College of Computer and Cyber Security,Fujian Normal University,Fuzhou Fujian 350117,China
    2.Digital Fujian Internet?of?Things Laboratory of Environmental Monitoring (Fujian Normal University),Fuzhou Fujian 350117,China
    3.Center for Applied Mathematics of Fujian Province (Fujian Normal University),Fuzhou Fujian 350117,China
  • Received:2024-02-19 Revised:2024-03-24 Accepted:2024-04-01 Online:2024-06-04 Published:2025-02-10
  • Contact: Lifei CHEN
  • About author:ZHANG Qianting, born in 1995, M. S. candidate. Her research interests include data mining, machine learning.
    HU Liying, born in 1979, Ph. D., associate professor. Her research interests include data mining, machine learning, target detection.
  • Supported by:
    National Natural Science Foundation of China(U1805263)

时间序列的鲁棒形态表征方法

张倩婷1,2, 胡丽莹1,2, 陈黎飞1,2,3()   

  1. 1.福建师范大学 计算机与网络空间安全学院,福州 350117
    2.数字福建环境监测物联网实验室(福建师范大学),福州 350117
    3.福建省应用数学中心(福建师范大学),福州 350117
  • 通讯作者: 陈黎飞
  • 作者简介:张倩婷(1995—),女,福建惠安人,硕士研究生,主要研究方向:数据挖掘、机器学习
    胡丽莹(1979—),女,浙江缙云人,副教授,博士,主要研究方向:数据挖掘、机器学习、目标检测;
  • 基金资助:
    国家自然科学基金资助项目(U1805263)

Abstract:

In view of the wide application of time series data in various fields, the mining and representation of identifiable features of the data is crucial. Due to the influence of the data acquisition environment and acquisition equipment, time series data in many application fields are characterized by high noise, which puts forward high requirements for the robustness of data representation methods. Therefore, a Robust Shapelet representation method for Time series (TRS) was proposed, which adopts the feature extraction method of Key-Shapelet (KS), retains the interpretability while reducing the influence of noise, and represents the time series by position distance measurement, thereby improving the robustness of the whole method. Experimental results on noise-disturbed time series data show that the features extracted by TRS are significantly better than those of the existing methods in classification, and the average accuracy of TRS is 2.1 percentage points higher than that of the deep learning model — Adversarial Dynamic Shapelet Network (ADSN), which also extracts features based on Shapelets. It can be seen that the feature set extracted by TRS is more representative and robust.

Key words: time series, Key-Shapelet (KS), noise, robustness, representation

摘要:

鉴于时间序列数据在各个领域的广泛应用,对这些数据的可辨识特征的挖掘和表征至关重要。受数据采集环境和采集设备的影响,许多应用领域的时序数据都存在高噪声的特点,这对数据表征方法的鲁棒性提出了很高的要求。因此,提出一种时间序列的鲁棒形态表征方法(TRS)。该方法采用关键形态(KS)的特征提取方法,在保留可解释性的同时减少噪声的影响,并通过位置距离度量对时间序列进行表征,从而提高整个方法的鲁棒性。在受噪声干扰的时间序列数据上的实验结果表明,TRS所提取的特征在分类上显著均优于现有的方法,与同样基于形态模式提取特征的深度学习模型——对抗动态Shapelet网络(ADSN)相比,平均正确率高出2.1个百分点。可见,TRS提取的特征集更有代表性和鲁棒性。

关键词: 时间序列, 关键形态, 噪声, 鲁棒性, 表征

CLC Number: