《计算机应用》唯一官方网站

• •    下一篇

基于多尺度门控膨胀卷积网络的时间序列预测算法

曾渝1,张洋2,曾尚3,付茂栗1,何启学1,曾林隆1   

  1. 1. 中国科学院成都计算机应用研究所
    2. 中科院成都计算机应用研究所
    3. 中国科学院大学
  • 收稿日期:2023-11-16 修回日期:2024-01-15 发布日期:2024-02-29 出版日期:2024-02-29
  • 通讯作者: 张洋
  • 作者简介:曾渝(1999—),男,重庆人,硕士研究生,主要研究方向:时间序列分析、数据挖掘;张洋(1985—),男,河南平顶山人,高级工程师,硕士,主要研究方向:机器视觉与人工智能、大数据;曾尚(1995—),男,湖北荆门人,博士研究生,主要研究方向:大数据分析、数据挖掘;付茂栗(1988—),男,四川遂宁人,工程师,博士研究生,主要研究方向:人工智能、图像处理与模式识别;何启学(1978—),男,四川安顺人,高级工程师,主要研究方向:数据挖掘、人工智能;曾林隆(1998—),男,四川内江人,硕士研究生,主要研究方向:机器视觉、人工智能。
  • 基金资助:

     四川省重点研发计划项目(2023YFG0113)

Algorithm for Time Series Prediction based on Multi-Scale Gated Dilated Convolutional Networks

  • Received:2023-11-16 Revised:2024-01-15 Online:2024-02-29 Published:2024-02-29
  • Contact: Yang Zhang

摘要: 针对当前时间序列预测任务存在高维特征、大规模数据以及对预测准确性高要求等问题,提出一种基于多尺度趋势-周期分解的多头门控膨胀卷积网络模型。该模型采用多尺度分解方法,将原始协变量序列和预测变量序列分解为各自的趋势项和周期项,从而实现独立的预测。对于周期项,引入多头门控膨胀卷积网络的编码器,以提取各自的周期信息。在解码器阶段,使用交叉注意力机制进行通道信息的交互融合,将预测变量的周期信息采样对齐后通过时间注意力与通道融合信息进行周期预测;对于趋势项,采用自回归方式进行趋势预测,最终通过与周期预测结果相加得到最终的预测序列。与长短期记忆(LSTM)、Informer 等多个主流基准模型进行比较,本文的方法在 ETTm1、ETTh1 等5个数据集上的均方误差(MSE)平均下降了19.2%~52.8%,平均绝对误差(MAE)平均下降了12.1%~33.8%。通过消融实验验证了本文的多尺度分解模块、多头门控膨胀机制以及时间注意力模块能提升时序预测的准确度。

关键词: 时间序列预测, 序列分解, 膨胀卷积, 编码器, 解码器, 注意力机制

Abstract: Addressing challenges in time series prediction tasks, such as high-dimensional features, large-scale data, and the demand for high prediction accuracy, a multi-scale trend-period decomposition model based on a multi-head gated dilated convolutional neural network is proposed. A multi-scale decomposition approach is employed by the model to separate the original covariate sequence and the prediction variable sequence into their respective trend and period components, thereby enabling independent prediction. For the period components, an introduction is made of a multi-head gated dilated convolutional neural network encoder to extract individual period information. In the decoder stage, channel information interaction and fusion are achieved through the utilization of a crossattention mechanism. The combined sampled and aligned period information of the prediction variable is achieved through time attention and channel fusion to enable period prediction. Regarding trend components, trend prediction is executed using an autoregressive approach, and the final prediction sequence is obtained by incorporating the trend prediction results with the period predictions. Compared with seven mainstream benchmark models such as Long Short-Term Memory (LSTM), Informer, etc., a reduction in Mean Squared Error (MSE) is observed, ranging from 19.2% to 52.8% across five datasets including ETTm1, ETTh1, etc. Additionally, a decrease in Mean Absolute Error (MAE) is noted, ranging from 12.1% to 33.8% on the mentioned datasets. The ablation experiments confirmed that the multi-scale decomposition module, multi-head gated dilation mechanism, and time attention module proposed enhance the accuracy of time series prediction.

Key words: Time Series Prediction, Sequence Decomposition, Dilated Convolution, Encoder, Decoder, Attention Mechanism

中图分类号: