为有效控制终端直通(D2D)通信系统中的同频干扰并降低它的实现复杂度,提出一种基于图卷积网络(GCN)的分布式功率控制算法,旨在最大化所有D2D链路的加权和速率。首先将系统拓扑结构建模为图模型并定义节点和边的特征以及消息传递方式,随后借助无监督学习模型训练GCN中的模型参数。离线训练后,每条D2D链路可根据局部信道状态信息以及与相邻节点的交互过程来分布式地得到最佳功率控制策略。实验结果表明,相较于基于优化理论的算法,所提算法缩短了97.41%的运算时间且仅损失了3.409%的加权和速率;相较于基于深度强化学习理论的算法,所提算法具有良好的泛化能力,在不同参数设置下表现更加稳定。
针对时间序列子序列间的潜在信息交互不足导致分类准确率低的问题,提出时频域多尺度交叉注意力融合的时间序列分类方法TFFormer(Time-Frequency Transformer)。首先,将原始时间序列的时频域谱分别划分为等长子序列,经线性投影后加入位置信息解决时间序列的点值耦合问题;其次,通过改进的多头自注意力(IMHA)模块使模型关注更重要的序列特征,解决长时间序列的前后依赖问题;最后,构造多尺度时频域交叉注意力(CMA)模块增强时间序列在时域和频域之间的信息交互,使模型进一步挖掘序列的频域信息。实验结果表明,在Trace、StarLightCurves和UWaveGestureLibraryAll数据集上,相较于全卷积网络(FCN),所提方法的分类准确率分别提高了0.3、0.9和1.4个百分点,验证了通过增强时间序列时域和频域间的信息交互,可以提高模型收敛速度和分类精度。
针对基于编码-解码网络的大容量隐写模型存在鲁棒性弱、无法抵抗噪声攻击和信道压缩的问题,提出一种基于编码-解码网络的大容量鲁棒图像隐写方案。首先,设计了基于密集连接卷积网络(DenseNet)的编码器、解码器和判别器,编码器将秘密信息和载体图像联合编码成隐写图像,解码器提取秘密信息,判别器用于区分载体图像和隐写图像。在编码器和解码器中间加入噪声层,采用Dropout、JPEG压缩、高斯模糊、高斯噪声和椒盐噪声模拟真实环境下的各类噪声攻击,编码器输出的隐写图像经过不同种类的噪声处理,再由解码器解码;通过训练模型,解码器能够对噪声处理后的隐写图像提取秘密信息,以抵抗噪声攻击。实验结果表明,所提方案在360×360像素的图像上隐写容量达到0.45~0.95 bpp,与次优的鲁棒隐写方案相比,相对嵌入容量提升了2.04倍;解码准确率可达0.72~0.97;与未添加噪声层的隐写方案相比,平均解码准确率提高了44个百分点。所提方案在保证高嵌入量、高编码图片质量的同时具有更强的抗噪声攻击能力。
针对图像超分辨重建过程中原始高清图片与低质量图像之间缺乏依赖关系、深度网络中特征图信息不分主次重构导致的图像高频信息高精度重构困难的问题,提出一种融合迭代反馈与注意力机制的单幅图像超分辨重建方法。首先使用频率分解模块分别提取图像中的高、低频信息,并将二者分别处理,使网络重点关注提取出的高频细节部分,增强方法在图像细节上的复原能力;其次通过通道注意力机制将重建的重点放在有效特征所在的特征通道上,增强网络提取特征图信息的能力;然后采用迭代反馈的思想,在反复重建和比对过程中增加图像的还原程度;最后通过重建模块生成输出图像。在Set5、Set14、BSD100、Urban100和Manga109基准数据集上的2倍、4倍和8倍放大实验中,与主流超分辨率方法相比,所提方法表现出更优越的性能。在Manga109数据集的8倍放大实验中,相较于传统插值方法和基于卷积神经网络的图像超分辨率算法(SRCNN),所提方法的峰值信噪比(PSNR)均值分别提升了约3.01 dB和2.32 dB。实验结果表明:所提方法能够降低重建过程中出现的误差,并有效重建出更精细的高分辨率图像。
针对多无人机(UAV)协同航迹规划中因编队队形约束而忽略部分较窄通道的问题,提出了一种基于自适应分布式模型预测控制的快速粒子群优化(ADMPC-FPSO)方法。该方法利用领航跟随法和虚拟结构法相结合的编队策略构造出虚拟编队引导点,以完成自适应编队协同控制任务。根据模型预测控制的思想,结合分布式控制方法,将协同航迹规划转化为滚动在线优化问题,且以最小距离等性能指标为代价函数。通过设计评价函数准则,使用变权重快速粒子群优化算法对问题进行求解。仿真结果表明,通过所提算法能够有效实现多无人机协同航迹规划,并可根据环境变化快速完成自适应编队变换,同时较传统编队策略代价更低。
针对不规则场景中光线跟踪算法绘制速度慢的问题,在深入学习和比较近些年的光线跟踪加速算法的基础上,提出了一种改进的网格细分的光线跟踪算法。首先,设置矩形场景包围盒,剔除对场景没有影响的外部光线,进而简化求交运算;其次,采用新方法创建空间网格,该方法可使空间单元数量和存储空间复杂度都限定在一定范围内;最后,对网格进行细分,这一步骤消除了传统空间网格算法忽略部分空白区域对加速效果产生的不良影响, 极大完善了传统空间网格算法。通过实验证明,该方法能有效提高光线在空白空间的穿行速度,不仅提高了时间效率,而且减少了空间开销。