《计算机应用》唯一官方网站

• •    下一篇

集成句法与情感知识的方面级情感分析模型

李自亮1,朱广丽2,张玉雷1,刘佳佳1,焦熠璇1,张顺香1,1   

  1. 1. 安徽理工大学
    2. 安徽理工大学计算机科学与工程学院
  • 收稿日期:2024-07-01 修回日期:2024-07-28 发布日期:2024-08-22 出版日期:2024-08-22
  • 通讯作者: 朱广丽
  • 基金资助:
    情感-时序-语义三维空间下微博热点话题用户群体倾向性分析;多模态社交媒体内容情感与立场分析

Aspect-based sentiment analysis model integrating syntax and sentiment knowledge

  • Received:2024-07-01 Revised:2024-07-28 Online:2024-08-22 Published:2024-08-22
  • Contact: Guang LiZHU

摘要: 摘 要: 方面级情感分析(ABSA)是一项细粒度的情感分析任务,旨在分析给定文本中特定方面词的情感极性。现有的ABSA方法采用图卷积网络(GCN)处理句法和语义信息,然而这些方法将方面词的所有句法依赖等同看待,忽略了远距离不相关词对目标方面词的影响,造成目标方面词和观点词权重分配不适宜,且对语义信息提取不充分。针对这一问题,提出一种集成句法与情感知识的方面级情感分析模型。首先,根据句法信息构建可达矩阵,以此为基础,利用方面词进行中心位置赋权构建句法增强图;其次通过外部情感知识和方面增强构建语义增强图,利用图卷积分别对句法增强图和语义增强图进行充分建模形成不同的特征通道,再通过双仿射注意力(biaffine attention)使句法和语义信息更有效地进行交互融合,最后运用平均池化(average-pooling)和拼接操作获取方面词对应的最终特征向量。相较于深度依赖感知图卷积网络(DA-GCN-BERT),所提模型在五个公开数据集上的准确率分别提高了1.71、1.41、1.27、0.17和0.43个百分点。实验结果表明,所提模型在方面级情感分析领域具有很强的适用性。

关键词: 关键词: 自然语言处理, 方面级情感分析, 图卷积网络, 双仿射注意力, 平均池化

Abstract: Abstract: Aspect-Based Sentiment Analysis(ABSA)is a fine-grained sentiment analysis task aims to analyze the sentiment polarity of specific aspect words in a given text. Existing ABSA methods used Graph Convolutional Network(GCN) to process syntactic and semantic information, but they treated all syntactic dependencies of aspect words equally, ignoring the impact of distant unrelated words on target aspect words, resulting in inappropriate weight allocation of target aspect words and viewpoint words, and insufficient extraction of semantic information. A aspect-based sentiment analysis model integrating syntax and sentiment knowledge was proposed to address this issue. first, a reachability matrix was constructed based on syntactic information. Based on this, a syntactic enhancement graph was constructed by weighting the central position of aspect words Then, a semantic enhancement graph was constructed through external emotional knowledge and aspect enhancement. Graph convolution was used to fully model the syntactic enhancement graph and semantic enhancement graph to form different feature channels. Next, biaffine Attention was used to effectively integrate syntactic and semantic information. Finally, average-pooling and concatenation operations were used to obtain the final feature vector corresponding to aspect words. Compared with the Deep Dependent Perception Graph Convolutional Network (DA-GCN-BERT), the proposed model achieved accuracy improvements of 1.71, 1.41, 1.27, 0.17, and 0.43 percentage points on five publicly available datasets, respectively. The experimental results indicate that the proposed model has strong applicability in the field of aspect-based sentiment analysis.

Key words: Keywords: Natural Language Processing(NLP), Aspect-based Sentiment Analysis(ABSA), Graph Convolutional Network(GCN), biAffine attention, average-pooling

中图分类号: