针对现有基于深度学习的篡改图像检测网络通常存在检测精度不高、算法可迁移性弱等问题,提出一种双通道渐进式特征过滤网络。利用两个通道并行提取图像的双域特征,一个通道提取图像空间域的浅层和深层特征,另一个通道提取图像噪声域的特征分布;同时,使用渐进式细微特征筛选机制过滤冗余特征,逐步定位篡改区域;为了更准确地提取篡改掩码,提出一个双输入细微特征提取模块,结合空间域和噪声域的细微特征,生成更准确的篡改掩码;在解码过程中,通过融合不同尺度的过滤特征和网络的上下文信息,提高网络对篡改区域的定位能力。实验结果表明,在检测和定位方面,与现有先进的篡改检测网络ObjectFormer、MVSS-Net(Multi-View multi-Scale Supervision Network)和PSCC-Net(Progressive Spatio-Channel Correlation Network)相比,所提网络的F1分数在CASIA V2.0数据集上分别提高10.4、5.9和12.9个百分点;面对高斯低通滤波、高斯噪声和JPEG压缩攻击时,相较于ManTra-Net(Manipulation Tracing Network)、SPAN(Spatial Pyramid Attention Network),所提网络的曲线下面积(AUC)分别至少提高了10.0、5.4个百分点。验证了所提网络可以有效解决篡改检测算法存在的检测精度不高、迁移性差等问题。
由于文本的模糊性和训练数据中位置信息的缺失,当前先进的扩散模型无法在文本提示的条件下准确控制生成对象在图像中的位置。针对这一问题,加入对象位置范围的空间条件,并基于U-Net中的交叉注意力图和图像空间布局的强关联性,提出一种注意力引导方法控制注意力图的生成,以控制对象的生成位置。具体地,基于稳定扩散(SD)模型,在U-Net层中的交叉注意力图生成的早期阶段,通过引入损失激发相应位置范围的高注意力值,减小范围外的平均注意力值,并在每一个去噪步骤中逐步优化隐空间中的噪声向量,从而控制注意力图的生成。实验结果表明,所提方法能明显控制一个或多个对象在生成图像中的位置,并在生成多个对象时能减少对象缺失、生成冗余对象和对象融合的现象。
针对三维医学影像的版权保护问题,以及随着待保护图像数量增加而导致的水印存储容量同步增加的问题,提出了一种基于光线投射采样和极复指数矩的三维医学影像鲁棒性零水印算法。首先,提出了一种基于光线投射的采样算法,对多张二维医学图像序列构成的三维医学影像进行特征采样并在二维图像空间中进行描述;其次,提出了一种针对三维医学影像的鲁棒性零水印算法,所提算法通过光线投射采样获取三维医学影像的冠状面、矢状面和横切面的3个二维特征图像,将3个二维特征图像进行极复指数变换获得四元数正交矩;最后,使用四元数正交矩和Logistic混沌加密构建零水印信息。仿真实验结果表明,在各种常见的图像处理攻击和几何攻击下所提算法能够保持零水印提取的比特正确率在0.920 0以上,水印存储容量随着三维医学影像的数据增多而提升,与其他优秀的二维医学图像零水印算法相比,所提算法的存储容量至少提升了93.75%。
针对城市辖区卫生系统韧性差异和应急医疗物资需求随机演变的情况,提出基于韧性评估的应急医疗物资多阶段动态配置模型。首先,结合熵值法和K-means算法,建立辖区卫生系统韧性评估体系及分类方法;其次,将需求状态的随机演变特性设计成Markov过程,并运用三角模糊数处理模糊性需求,从而建立应急医疗物资多阶段动态配置模型;最后,采用二进制人工蜂群(ABC)算法求解所提模型,并通过实际算例分析并验证所提模型的有效性。实验结果表明,所提模型能够实现物资的动态配置,从而使需求变化趋于平稳,并且能够优先配置韧性薄弱的辖区,体现了应急管理要求的公平性和时效性。
考虑到航空客流需求序列的季节性、非线性和非平稳等特点,提出了一个基于二次分解重构策略的航空客流需求预测模型。首先,通过STL和自适应噪声互补集成经验模态分解(CEEMDAN)方法对航空客流需求序列进行二次分解,并根据数据复杂度和相关度的特征分析结果进行分量重构;然后,采用模型匹配策略分别选取自回归单整移动平均季节(SARIMA)、自回归单整移动平均(ARIMA)、核极限学习机(KELM)和双向长短期记忆(BiLSTM)网络模型对各重构分量进行预测,其中KELM和BiLSTM模型的超参数通过自适应树Parzen估计(ATPE)算法确定;最后,将重构分量预测结果进行线性集成。以北京首都国际机场、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了1步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了14.98%~60.72%。可见以“分而治之”思想为指导,所提模型结合模型匹配和重构策略挖掘出了数据的内在发展规律,从而为科学预判航空客流需求变化趋势提供了新思路。
网联车辆节点产生的不同属性的大数据流量计算任务进行传输并卸载时,通常引起通信系统中时延抖动、计算能耗与系统开销大等问题,因此,根据实际通信环境,提出一种C-V2X车联网(IoV)中基于模拟退火算法(SAA)的任务卸载与资源分配方案。首先,根据任务处理优先程度,对处理优先程度较高的任务进行协同卸载计算处理;其次,通过全局搜索最优卸载比例因子的方式,制定了一种基于SAA的任务卸载策略,且分析并优化了任务卸载比例因子;最后,在任务卸载比例因子更新过程中,将系统开销最小化问题转化为功率和计算资源分配凸优化问题,并利用拉格朗日乘子法获取最优解。通过对所提算法与本地卸载、自适应遗传算法等作比较可知,随着计算任务的数据量不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了5.97%、49.40%、49.36%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了6.35%、92.27%、91.7%;随着计算任务CPU周期数不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了16.4%、49.58%、49.23%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了19.61%、94.39%、89.88%。实验结果表明,SAA不仅能降低通信系统时延、能耗及系统开销,还可以使结果加速收敛。
针对现有基于深度学习框架的水印算法无法有效保护高维医学图像版权问题,提出一种基于多尺度知识学习的医学图像水印算法用于弥散加权图像的版权保护。首先,提出一个基于多尺度知识学习的水印嵌入网络来嵌入水印,并通过微调的预训练网络提取弥散加权图像的语义、纹理、边缘以及频域信息作为多尺度的知识特征;然后,结合多尺度的知识特征来重构弥散加权图像,并在该过程中冗余地嵌入水印,从而获得视觉上与原始图像高度相似的含水印的弥散加权图像;最后,提出一个基于金字塔特征学习的水印提取网络,并通过在含有水印的弥散加权图像的不同尺度的上下文中学习水印信号的分布相关性来提高算法的鲁棒性。实验结果表明,所提算法重构出的含水印图的平均峰值信噪比(PSNR)达到57.82 dB。由于弥散加权图像在转换为弥散张量图像时需满足一定的弥散性特征,所提算法仅8个像素点的主轴方向偏转角大于5°,且这8个像素点均不在图像的感兴趣区域。此外,该算法所得图像的各项异性(FA)以及平均弥散率(MD)都接近为0,完全满足临床诊断的要求;且面对裁剪强度小于0.7,旋转角度小于15°等常见的噪声攻击,该算法的水印正确率达到95%以上,能有效保护弥散加权图像的版权信息。
软件定义网络(SDN)中,流表项是由控制器创建并指导交换机处理数据包的转发规则。流表项保存在交换机的内存并有一定的超时时间,会影响SDN控制通道的带宽消耗、交换机的内存消耗以及系统资源和性能的管理。针对现有SDN性能优化方案大多为单一目标优化,未考虑流表项超时类型和时间对不同优化目标的影响,提出一种基于流表项动态混合超时的多目标优化方案,对大象流的侦测精度、流表项的交换机内存消耗和控制通道带宽占用进行三目标联合优化。动态混合超时将现有的两种流表项超时方式,即硬超时和空闲超时相结合,并对流表项的超时类型和时间进行双维度动态调节。通过NSGA-Ⅱ算法求解所提优化问题,评估不同超时方式和超时时间对三个优化目标的影响,并通过合并特定超时时间下的解集与贝叶斯多目标优化算法的解集对NSGA-Ⅱ算法的解集质量进行改进。结果表明,所提方案能提供更高的侦测精度、更低的带宽占用和更小的交换机内存消耗,明显提升了SDN的综合性能。
针对传统小波阈值函数在阈值处的不连续性、小波估计系数存在偏差等不足,导致去噪后的图像出现失真、产生吉布斯震荡等问题,提出了一种改进的阈值函数,与常用的硬阈值、软阈值以及已有改进的阈值函数相比,该函数不仅易于计算,而且具有优越的数学特性。为了验证该阈值函数的优越性,通过仿真实验对几种小波去噪方法的峰值信噪比(PSNR)与均方差(MSE)进行了对比。实验结果表明,此去噪方法无论是在视觉效果上,还是在均方差和信噪比性能分析上均优于常用的阈值函数。
针对结构模式识别领域中通用图嵌入方法缺乏且计算复杂度较高的问题,基于空间句法理论提出一种融合多尺度特征的图嵌入方法。通过提取图的节点数、边数和智能度等全局特征、节点拓扑特征、边领域特征差异度和边拓扑特征差异度等局部特征和节点与边上的数值属性和符号属性等细节特征,利用多尺度直方图统计的方法构造描述图特征的特征向量,以此将桥梁将结构模式识别问题转化为统计模式识别问题,进而借助支持向量机(SVM)实现图的分类识别。实验结果表明,所提出的图嵌入方法在不同的图数据集上均具有较高的分类识别率。与其他图嵌入方法相比,该方法对图的拓扑表达能力强,并且可融合图的领域方面的非拓扑特征,通用性较好,计算复杂度较低。