《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1303-1309.DOI: 10.11772/j.issn.1001-9081.2023040493
所属专题: 多媒体计算与计算机仿真
收稿日期:
2023-04-28
修回日期:
2023-07-26
接受日期:
2023-07-31
发布日期:
2023-12-04
出版日期:
2024-04-10
通讯作者:
陈茜
作者简介:
付顺旺(1996—),男,贵州遵义人,硕士研究生,CCF会员,主要研究方向:深度学习、图像篡改检测基金资助:
Shunwang FU1, Qian CHEN1(), Zhi LI2, Guomei WANG2, Yu LU3
Received:
2023-04-28
Revised:
2023-07-26
Accepted:
2023-07-31
Online:
2023-12-04
Published:
2024-04-10
Contact:
Qian CHEN
About author:
FU Shunwang, born in 1996, M.S. candidate. His research interests include deep learning, image tamper detection.Supported by:
摘要:
针对现有基于深度学习的篡改图像检测网络通常存在检测精度不高、算法可迁移性弱等问题,提出一种双通道渐进式特征过滤网络。利用两个通道并行提取图像的双域特征,一个通道提取图像空间域的浅层和深层特征,另一个通道提取图像噪声域的特征分布;同时,使用渐进式细微特征筛选机制过滤冗余特征,逐步定位篡改区域;为了更准确地提取篡改掩码,提出一个双输入细微特征提取模块,结合空间域和噪声域的细微特征,生成更准确的篡改掩码;在解码过程中,通过融合不同尺度的过滤特征和网络的上下文信息,提高网络对篡改区域的定位能力。实验结果表明,在检测和定位方面,与现有先进的篡改检测网络ObjectFormer、MVSS-Net(Multi-View multi-Scale Supervision Network)和PSCC-Net(Progressive Spatio-Channel Correlation Network)相比,所提网络的F1分数在CASIA V2.0数据集上分别提高10.4、5.9和12.9个百分点;面对高斯低通滤波、高斯噪声和JPEG压缩攻击时,相较于ManTra-Net(Manipulation Tracing Network)、SPAN(Spatial Pyramid Attention Network),所提网络的曲线下面积(AUC)分别至少提高了10.0、5.4个百分点。验证了所提网络可以有效解决篡改检测算法存在的检测精度不高、迁移性差等问题。
中图分类号:
付顺旺, 陈茜, 李智, 王国美, 卢妤. 用于篡改图像检测和定位的双通道渐进式特征过滤网络[J]. 计算机应用, 2024, 44(4): 1303-1309.
Shunwang FU, Qian CHEN, Zhi LI, Guomei WANG, Yu LU. Two-channel progressive feature filtering network for tampered image detection and localization[J]. Journal of Computer Applications, 2024, 44(4): 1303-1309.
数据集 | 图像数 | 复制-粘贴数 | 图像拼接数 | 图像删除数 |
---|---|---|---|---|
Columbia[ | 180 | 0 | 180 | 0 |
Coverage[ | 100 | 100 | 0 | 0 |
CASIA V2.0[ | 5 063 | 3 235 | 1 828 | 0 |
NIST16[ | 564 | 68 | 288 | 208 |
表1 四个数据集上的篡改操作数量
Tab. 1 Quantities of tampering operations in four datasets
数据集 | 图像数 | 复制-粘贴数 | 图像拼接数 | 图像删除数 |
---|---|---|---|---|
Columbia[ | 180 | 0 | 180 | 0 |
Coverage[ | 100 | 100 | 0 | 0 |
CASIA V2.0[ | 5 063 | 3 235 | 1 828 | 0 |
NIST16[ | 564 | 68 | 288 | 208 |
网络 | CASIA V2.0 | Coverage | NIST16 | Columbia | ||||
---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | |
ELA[ | 61.3 | 21.4 | 58.3 | 22.2 | 42.9 | 23.6 | — | — |
NOI1[ | 61.2 | 26.3 | 58.7 | 26.9 | 48.7 | 28.5 | 58.6 | — |
CFA1[ | 52.2 | 20.7 | 48.5 | 19.0 | 50.1 | 17.4 | 48.7 | — |
ManTra-Net[ | 81.7 | 48.1 | 79.5 | — | 84.5 | 82.0 | 82.4 | — |
MVSS-Net[ | 86.6 | 62.4 | 73.1 | 22.4 | 83.9 | 75.3 | 98.0 | 80.2 |
SPAN[ | 83.8 | 38.2 | 93.7 | 55.8 | 83.6 | 29.0 | — | — |
PSCC-Net[ | 87.5 | 55.4 | 94.1 | 72.3 | 99.6 | 81.9 | 98.2 | 98.1 |
ObjectFormer[ | 88.2 | 57.9 | 95.7 | 75.8 | 99.6 | 82.4 | 95.5 | — |
本文网络 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
表2 现有微调模型对测试集进行像素级定位的AUC和F1评估 (%)
Tab. 2 Pixel-level positioning AUC and F1 evaluation on test sets for existing fine-tuning models
网络 | CASIA V2.0 | Coverage | NIST16 | Columbia | ||||
---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | |
ELA[ | 61.3 | 21.4 | 58.3 | 22.2 | 42.9 | 23.6 | — | — |
NOI1[ | 61.2 | 26.3 | 58.7 | 26.9 | 48.7 | 28.5 | 58.6 | — |
CFA1[ | 52.2 | 20.7 | 48.5 | 19.0 | 50.1 | 17.4 | 48.7 | — |
ManTra-Net[ | 81.7 | 48.1 | 79.5 | — | 84.5 | 82.0 | 82.4 | — |
MVSS-Net[ | 86.6 | 62.4 | 73.1 | 22.4 | 83.9 | 75.3 | 98.0 | 80.2 |
SPAN[ | 83.8 | 38.2 | 93.7 | 55.8 | 83.6 | 29.0 | — | — |
PSCC-Net[ | 87.5 | 55.4 | 94.1 | 72.3 | 99.6 | 81.9 | 98.2 | 98.1 |
ObjectFormer[ | 88.2 | 57.9 | 95.7 | 75.8 | 99.6 | 82.4 | 95.5 | — |
本文网络 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
网络 | 帧率 |
---|---|
ManTra-Net | 2.8 |
MVSS-Net | 20.1 |
本文网络 | 12.9 |
表3 算法复杂度比较 (frame/s)
Tab. 3 Comparison of algorithm complexity
网络 | 帧率 |
---|---|
ManTra-Net | 2.8 |
MVSS-Net | 20.1 |
本文网络 | 12.9 |
网络结构 | CASIA V2.0 | Coverage | NIST16 | Columbia | |||||
---|---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | ||
M5 | 77.0 | 59.2 | 75.6 | 53.9 | 89.8 | 83.1 | 94.1 | 87.2 | |
M1+M5 | 78.5 | 61.3 | 76.2 | 54.6 | 92.4 | 84.7 | 97.7 | 93.8 | |
M1+M2+M5 | 78.7 | 62.1 | 78.6 | 59.2 | 92.6 | 85.6 | 98.3 | 96.0 | |
M1+M2+M3+M5 | 80.2 | 64.6 | 80.3 | 63.8 | 92.8 | 87.5 | 98.9 | 97.5 | |
M1+M2+M3+M4+M5 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
表4 不同掩膜监督下网络的定位性能 (%)
Tab. 4 Positioning performance of network under different mask supervisions
网络结构 | CASIA V2.0 | Coverage | NIST16 | Columbia | |||||
---|---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | ||
M5 | 77.0 | 59.2 | 75.6 | 53.9 | 89.8 | 83.1 | 94.1 | 87.2 | |
M1+M5 | 78.5 | 61.3 | 76.2 | 54.6 | 92.4 | 84.7 | 97.7 | 93.8 | |
M1+M2+M5 | 78.7 | 62.1 | 78.6 | 59.2 | 92.6 | 85.6 | 98.3 | 96.0 | |
M1+M2+M3+M5 | 80.2 | 64.6 | 80.3 | 63.8 | 92.8 | 87.5 | 98.9 | 97.5 | |
M1+M2+M3+M4+M5 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
网络设置 | CASIA V2.0 | Coverage | NIST16 | Columbia | ||||
---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | |
单ResNet-50+3×3卷积 | 75.3 | 56.7 | 74.3 | 47.9 | 86.7 | 76.1 | 98.1 | 94.1 |
双ResNet-50+3×3卷积 | 78.6 | 62.8 | 76.1 | 53.4 | 87.3 | 78.9 | 98.6 | 94.2 |
单ResNet-50+双输入细微特征模块 | 79.4 | 63.9 | 80.1 | 59.5 | 93.6 | 89.1 | 99.3 | 96.0 |
双ResNet-50+双输入细微特征模块 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
表5 消融实验结果 (%)
Tab. 5 Ablation experiment results
网络设置 | CASIA V2.0 | Coverage | NIST16 | Columbia | ||||
---|---|---|---|---|---|---|---|---|
AUC | F1 | AUC | F1 | AUC | F1 | AUC | F1 | |
单ResNet-50+3×3卷积 | 75.3 | 56.7 | 74.3 | 47.9 | 86.7 | 76.1 | 98.1 | 94.1 |
双ResNet-50+3×3卷积 | 78.6 | 62.8 | 76.1 | 53.4 | 87.3 | 78.9 | 98.6 | 94.2 |
单ResNet-50+双输入细微特征模块 | 79.4 | 63.9 | 80.1 | 59.5 | 93.6 | 89.1 | 99.3 | 96.0 |
双ResNet-50+双输入细微特征模块 | 89.1 | 68.3 | 81.5 | 65.1 | 93.8 | 90.2 | 99.3 | 99.1 |
攻击类型 | 参数 | AUC值/% | ||
---|---|---|---|---|
ManTra-Net | SPAN | 本文网络 | ||
无操作 | — | 84.5 | 83.6 | 93.8 |
高斯滤波 | k=3 | 77.4 | 83.1 | 91.5 |
k=15 | 74.5 | 79.1 | 84.5 | |
高斯噪声 | σ=3 | 67.4 | 75.1 | 92.1 |
σ=15 | 58.5 | 67.2 | 85.7 | |
JPEG压缩 | QF= 100 | 77.9 | 83.5 | 93.6 |
QF= 50 | 74.3 | 80.6 | 90.1 |
表6 NIST16数据集上不同后处理方法的模型AUC值比较
Tab. 6 Model AUC value comparison to different post-processing methods on NIST16 dataset
攻击类型 | 参数 | AUC值/% | ||
---|---|---|---|---|
ManTra-Net | SPAN | 本文网络 | ||
无操作 | — | 84.5 | 83.6 | 93.8 |
高斯滤波 | k=3 | 77.4 | 83.1 | 91.5 |
k=15 | 74.5 | 79.1 | 84.5 | |
高斯噪声 | σ=3 | 67.4 | 75.1 | 92.1 |
σ=15 | 58.5 | 67.2 | 85.7 | |
JPEG压缩 | QF= 100 | 77.9 | 83.5 | 93.6 |
QF= 50 | 74.3 | 80.6 | 90.1 |
1 | LAHIRI A, JAIN A K, AGRAWAL S, et al. Prior guided GAN based semantic inpainting[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13696-13705. 10.1109/cvpr42600.2020.01371 |
2 | LEE C-H, LIU Z, WU L, et al. MaskGAN: towards diverse and interactive facial image manipulation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5549-5558. 10.1109/cvpr42600.2020.00559 |
3 | SHEN Y, GU J, TANG X, et al. Interpreting the latent space of gans for semantic face editing[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9243-9252. 10.1109/cvpr42600.2020.00926 |
4 | AMERINI I, URICCHIO T, BALLAN L, et al. Localization of JPEG double compression through multi-domain convolutional neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 53-59. 10.1109/cvprw.2017.233 |
5 | HAN J G, PARK T H, MOON Y H, et al. Efficient Markov feature extraction method for image splicing detection using maximization and threshold expansion[J]. Journal of Electronic Imaging, 2016, 25(2): 023031. 10.1117/1.jei.25.2.023031 |
6 | SALLOUM R, REN Y, C-C J KUO. Image splicing localization using a Multi-Task Fully Convolutional Network (MFCN)[J]. Journal of Visual Communication and Image Representation, 2018, 51: 201-209. 10.1016/j.jvcir.2018.01.010 |
7 | BAYAR B, STAMM M C. Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 2691-2706. 10.1109/tifs.2018.2825953 |
8 | COZZOLINO D, VERDOLIVA L. Noiseprint: a CNN-based camera model fingerprint[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 144-159. 10.1109/tifs.2019.2916364 |
9 | FAN Y, CARRÉ P, FERNANDEZ-MALOIGNE C. Image splicing detection with local illumination estimation[C]// Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 2940-2944. 10.1109/icip.2015.7351341 |
10 | 顾嘉城,龙英文,吉明明.基于集成生成对抗网络的视频异常事件检测方法[J].液晶与显示,2022,37(12):1607-1613. 10.37188/cjlcd.2022-0151 |
GU J C, LONG Y W, JI M M. Video anomaly detection based on ensemble generative adversarial networks [J]. Chinese Journal of Liquid Crystals and Displays,2022,37(12):1607-1613. 10.37188/cjlcd.2022-0151 | |
11 | WU Y, ABD-ALMAGEED W, NATARAJAN P. BusterNet: detecting copy-move image forgery with source/target localization[C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 170-184. 10.1007/978-3-030-01231-1_11 |
12 | HUH M, LIU A, OWENS A, et al. Fighting fake news: image splice detection via learned self-consistency[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 101-117. 10.1007/978-3-030-01252-6_7 |
13 | BONDI L, LAMERI S, GÜERA D, et al. Tampering detection and localization through clustering of camera-based CNN features[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1855-1864. 10.1109/cvprw.2017.232 |
14 | BONDI L, BAROFFIO L, GÜERA D, et al. First steps toward camera model identification with convolutional neural networks[J]. IEEE Signal Processing Letters, 2017, 24(3): 259-263. 10.1109/lsp.2016.2641006 |
15 | SHI Z, SHEN X, KANG H, et al. Image manipulation detection and localization based on the dual-domain convolutional neural networks[J]. IEEE Access, 2018, 6: 76437-76453. 10.1109/access.2018.2883588 |
16 | 王宏,钱清,王欢,等.LKA-EfficientNet:大数据背景下融合大核注意力卷积的轻量化图像篡改定位算法[J]. 计算机应用, 2023, 43(9):2692-2699. |
WANG H, QIAN Q, WANG H, et al. LKA-EfficientNet: lightweight image tamper location algorithm for big data based on large-core attention convolution[J]. Journal of Computer Applications, 2023, 43(9):2692-2699. | |
17 | T-T NG, HSU J, CHANG S-F. Columbia image splicing detection evaluation dataset[DB/OL]. [2023-04-01]. . |
18 | WEN B, ZHU Y, SUBRAMANIAN R, et al. COVERAGE — a novel database for copy-move forgery detection[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 161-165. 10.1109/icip.2016.7532339 |
19 | DONG J, WANG W, TAN T. CASIA image tampering detection evaluation database[C]// Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 422-426. 10.1109/chinasip.2013.6625374 |
20 | GUAN H, KOZAK M, ROBERTSON E, et al. MFC datasets: large-scale benchmark datasets for media forensic challenge evaluation[C]// Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops. Piscataway: IEEE, 2019: 63-72. 10.1109/wacvw.2019.00018 |
21 | WANG J, WU Z, CHEN J, et al. ObjectFormer for image manipulation detection and localization[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2364-2373. 10.1109/cvpr52688.2022.00240 |
22 | LIU X, LIU Y, CHEN J, et al. PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7505-7517. 10.1109/tcsvt.2022.3189545 |
23 | CHEN X, DONG C, JI J, et al. Image manipulation detection by multi-view multi-scale supervision[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14185-14193. 10.1109/iccv48922.2021.01392 |
24 | WU Y, ABDALMAGEED W, NATARAJAN P. ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9543-9552. 10.1109/cvpr.2019.00977 |
25 | HU X, ZHANG Z, JIANG Z, et al. SPAN: spatial pyramid attention network for image manipulation localization[C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 312-328. 10.1007/978-3-030-58589-1_19 |
26 | CHIERCHIA G, POGGI G, SANSONE C, et al. PRNU-based forgery detection with regularity constraints and global optimization[C]// Proceedings of the 2013 IEEE 15th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2013: 236-241. 10.1109/mmsp.2013.6659294 |
27 | CHIERCHIA G, POGGI G, SANSONE C, et al. A Bayesian-MRF approach for PRNU-based image forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(4): 554-567. 10.1109/tifs.2014.2302078 |
28 | ZHOU P, HAN X, MORARIU V I, et al. Learning rich features for image manipulation detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1053-1061. 10.1109/cvpr.2018.00116 |
29 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
30 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
31 | WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 |
32 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
33 | YANG M, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3684-3692. 10.1109/cvpr.2018.00388 |
34 | ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer,2018: 294-310. 10.1007/978-3-030-01234-2_18 |
35 | WARIF N B A, IDRIS M Y I, WAHAB A W A, et al. An evaluation of error level analysis in image forensics[C]// Proceedings of the 2015 5th IEEE International Conference on System Engineering and Technology. Piscataway: IEEE, 2015: 23-28. 10.1109/icsengt.2015.7412439 |
36 | MAHDIAN B, SAIC S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497-1503. 10.1016/j.imavis.2009.02.001 |
37 | FERRARA P, BIANCHI T, DE ROSA A, et al. Image forgery localization via fine-grained analysis of CFA artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1566-1577. 10.1109/tifs.2012.2202227 |
[1] | 李晨倩, 刘俊. 基于半监督和多尺度级联注意力的超声颈动脉斑块分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2604-2610. |
[2] | 刘源泂, 何茂征, 黄益斌, 钱程. 基于ResNet50和改进注意力机制的船舶识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1935-1941. |
[3] | 王美, 苏雪松, 刘佳, 殷若南, 黄珊. 时频域多尺度交叉注意力融合的时间序列分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1842-1847. |
[4] | 郭琳, 刘坤虎, 马晨阳, 来佑雪, 徐映芬. 基于感受野扩展残差注意力网络的图像超分辨率重建[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1579-1587. |
[5] | 周景贤, 李希娜. 基于改进卷积神经网络和射频指纹的无人机检测与识别[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 876-882. |
[6] | 王宏, 钱清, 王欢, 龙永. 融合大核注意力卷积的轻量化图像篡改定位算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2692-2699. |
[7] | 黄学雨, 贺怀宇, 林慧敏, 陈金水. 基于特征聚合的铜合金金相图分类识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2593-2601. |
[8] | 齐爱玲, 王宣淋. 基于中层细微特征提取与多尺度特征融合细粒度图像识别[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2556-2563. |
[9] | 张慧斌, 冯丽萍, 郝耀军, 王一宁. 基于注意力机制和迁移学习的古壁画朝代识别[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1826-1832. |
[10] | 申利华, 李波. 基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1612-1619. |
[11] | 宋其洪, 刘建勋, 扈海泽, 张祥平. 基于协同融合网络的代码搜索模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3896-3902. |
[12] | 张志昂, 廖光忠. 基于U-Net的多尺度特征增强视网膜血管分割算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3275-3281. |
[13] | 廖列法, 李志明, 张赛赛. 基于深度残差网络的迭代量化哈希图像检索方法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2845-2852. |
[14] | 贺怀清, 闫建青, 惠康华. 基于深度残差网络的轻量级人脸识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2030-2036. |
[15] | 董明宇, 严迪群. 基于ResNet的音频场景声替换造假的检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1724-1728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||